Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/202034
Title: FlowCT for the analysis of large immunophenotypic datasets and biomarker discovery in cancer immunology
Author: Botta, Cirino
Maia, Catarina
Garcés, Juan José
Termini, Rosalinda
Pérez, Cristina
Manrique, Irene
Burgos, Leire
Zabaleta, Aintzane
Alignani, Diego
Sarvide, Sarai
Merino, Juana
Puig, Noemí
Cedena, María Teresa
Rossi, Marco
Tassone, Pierfrancesco
Gentile, Massimo
Correale, Pierpaolo
Borrello, Ivan
Terpos, Evangelos
Jelinek, Tomas
Paiva, Artur
Roccaro, Aldo
Goldschmidt, Hartmut
Avet-Loiseau, Hervé
Rosiñol, Laura
Mateos, María Victoria
Martínez López, Joaquín
Lahuerta, Juan José
Bladé, J. (Joan)
San Miguel, Jesús F.
Paiva, Bruno
Keywords: Informàtica mèdica
Diagnòstic immunològic
Immunodiagnosis
Medical informatics
Issue Date: 24-Jan-2022
Publisher: American Society of Hematology
Abstract: Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge when attempting to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large data sets. It includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering, and predictive modeling tools. As a proof of concept, we used FlowCT to compare the T-cell compartment in bone marrow (BM) with peripheral blood (PB) from patients with smoldering multiple myeloma (SMM), identify minimally invasive immune biomarkers of progression from smoldering to active MM, define prognostic T-cell subsets in the BM of patients with active MM after treatment intensification, and assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 samples were analyzed and immune signatures predictive of malignant transformation were identified in 150 patients with SMM (hazard ratio [HR], 1.7; P < .001). We also determined progression-free survival (HR, 4.09; P < .0001) and overall survival (HR, 3.12; P = .047) in 100 patients with active MM. New data also emerged about stem cell memory T cells, the concordance between immune profiles in BM and PB, and the immunomodulatory effect of maintenance therapy. FlowCT is a new open-source computational approach that can be readily implemented by research laboratories to perform quality control, analyze high-dimensional data, unveil cellular diversity, and objectively identify biomarkers in large immune monitoring studies. These trials were registered at www.clinicaltrials.gov as #NCT01916252 and #NCT02406144.© 2022 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.
Note: Reproducció del document publicat a: https://doi.org/10.1182/bloodadvances.2021005198
It is part of: Blood Advances, 2022, vol. 6, num. 2, p. 690-703
URI: http://hdl.handle.net/2445/202034
Related resource: https://doi.org/10.1182/bloodadvances.2021005198
ISSN: 2473-9537
Appears in Collections:Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)

Files in This Item:
File Description SizeFormat 
FlowCT for the analysis of large immunophenotypic data sets_BloodAdvances.pdf2.7 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons