Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/202102
Title: | Rough volatility models using the signature transform: theory and calibration |
Author: | Díaz Lozano, Pere |
Director/Tutor: | Vives i Santa Eulàlia, Josep, 1963- |
Keywords: | Processos estocàstics Opcions (Finances) Treballs de fi de màster Stochastic processes Options (Finance) Master's thesis |
Issue Date: | 28-Jun-2023 |
Abstract: | [en] In this thesis we study a general stochastic volatility model where the dynamics of the volatility process are described by using the signature transform, a key object in rough path theory which is also very popular in the machine learning community due to its fundamental properties in approximation theory. More specifically, we will present a general model for the evolution of the price of the underlying asset where the dynamics of the volatility are described by linear functions of the (time extended) signature of a primary underlying process. We will finally use this model in practice, showing how it can be efficiently calibrated to market prices of options by a Monte Carlo simulation. |
Note: | Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2022-2023. Director: Josep Vives i Santa Eulàlia |
URI: | https://hdl.handle.net/2445/202102 |
Appears in Collections: | Màster Oficial - Matemàtica Avançada |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_díaz_lozano_pere.pdf | Memòria | 6.66 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License