Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/202970
Title: Espais vectorials de linealitzacions per a matrius polinomials
Author: Fernández Montseny, Irene
Director/Tutor: Montoro López, M. Eulàlia
Keywords: Àlgebra lineal
Treballs de fi de grau
Matrius (Matemàtica)
Linear algebra
Bachelor's theses
Matrices
Issue Date: 13-Jun-2023
Abstract: [en] For eigenvalue problems of polynomial matrices we find that the classic solution method is linearization of the polynomial matrix. Reformulating the initial eigenvalue problem we obtain an expression for matrix pencils, that is, matrices of the form $\lambda X+Y, X, Y \in \mathbb{C}^{n \times n}$, which maintains the spectral structure. Within the framework of linear algebra and matrix theory, polynomial matrices are objects of recent study. In this work we focus on square regular polynomial matrices, i.e. with non-zero determinant. We introduce the basic concepts necessary to understand them, then we see what the linearization of regular polynomial matrices consist of and we define the "companion forms" or companion matrices. Finally, we study the vector spaces of linearizations; more specifically, how to construct two vector spaces of dense pencils in the set of linearizations.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: M. Eulàlia Montoro López
URI: http://hdl.handle.net/2445/202970
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_irene_fernández_montseny.pdfMemòria594.46 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons