Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/203142
Title: Sèries temporals amb memòria llarga: models ARFIMA
Author: Muñoz Martínez, Sergio
Director/Tutor: Vives i Santa Eulàlia, Josep, 1963-
Keywords: Processos estocàstics
Anàlisi de sèries temporals
Models lineals (Estadística)
Estadística matemàtica
Treballs de fi de grau
Stochastic processes
Time-series analysis
Linear models (Statistics)
Mathematical statistics
Bachelor's theses
Issue Date: 12-Jun-2023
Abstract: [en] Time series analysis plays a vital role in understanding various phenomena in a wide variety of fields. Over the years, more complex statistical models have been developed that allow us to analyze time series in a more accurate way. This project studies in depth one of them: the ARFIMA models. These models are very useful for examining long memory time series. The main purpose of this project is to provide a comprehensive analysis of these models, including their theoretical foundations, estimation methods and a practical implementation. In particular, the $R$ programming language is used to evaluate the possibility of modeling the time series that shows the air quality of Barcelona between 2017 and 2019 using an ARFIMA model.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023 , Director: Josep Vives i Santa Eulàlia
URI: http://hdl.handle.net/2445/203142
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_munoz_martinez_sergio.pdfMemòria1.57 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons