Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/203142
Title: | Sèries temporals amb memòria llarga: models ARFIMA |
Author: | Muñoz Martínez, Sergio |
Director/Tutor: | Vives i Santa Eulàlia, Josep, 1963- |
Keywords: | Processos estocàstics Anàlisi de sèries temporals Models lineals (Estadística) Estadística matemàtica Treballs de fi de grau Stochastic processes Time-series analysis Linear models (Statistics) Mathematical statistics Bachelor's theses |
Issue Date: | 12-Jun-2023 |
Abstract: | [en] Time series analysis plays a vital role in understanding various phenomena in a wide variety of fields. Over the years, more complex statistical models have been developed that allow us to analyze time series in a more accurate way. This project studies in depth one of them: the ARFIMA models. These models are very useful for examining long memory time series. The main purpose of this project is to provide a comprehensive analysis of these models, including their theoretical foundations, estimation methods and a practical implementation. In particular, the $R$ programming language is used to evaluate the possibility of modeling the time series that shows the air quality of Barcelona between 2017 and 2019 using an ARFIMA model. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023 , Director: Josep Vives i Santa Eulàlia |
URI: | http://hdl.handle.net/2445/203142 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_munoz_martinez_sergio.pdf | Memòria | 1.57 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License