Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/203162
Title: | Lleis infinitament divisibles i processos de Lévy |
Author: | Piquer i Méndez, Marc |
Director/Tutor: | Vives i Santa Eulàlia, Josep, 1963- |
Keywords: | Distribució (Teoria de la probabilitat) Processos estocàstics Processos de Lévy Treballs de fi de grau Distribution (Probability theory) Stochastic processes Lévy processes Bachelor's theses |
Issue Date: | 13-Jun-2023 |
Abstract: | [en] We study infinitely divisible distributions, which are the distributions of random variables which can be decomposed into $n$ other i.i.d. variables for all $n \in \mathbb{N}$, as well as the particular case of stable laws, and we give their representation by the Lévy-Khintchine theorem. We also study Lévy processes, the stochastically continuous stochastic processes with independent and stationary increments, which have a one-to-one correspondence with infinitely divisible distributions, and give their decomposition into continuous part and jump part known as the Lévy-Itô decomposition. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Josep Vives i Santa Eulàlia |
URI: | https://hdl.handle.net/2445/203162 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_piquer_mendez_marc.pdf | Memòria | 743.28 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License