Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/206207
Títol: An angiopoietin 2, FGF23, and BMP10 biomarker signature differentiates atrial fibrillation from other concomitant cardiovascular conditions
Autor: Chua, Winnie
Cardoso, Victor R.
Guasch i Casany, Eduard
Sinner, Moritz F.
Al Taie, Christoph
Brady, Paul
Casadei, Barbara
Crijns, Harry J. G. M.
Dudink, Elton A. M. P.
Hatem, Stéphane N.
Kaab, Stefan
Kastner, Peter
Mont Girbau, Lluís
Nehaj, Frantisek
Purmah, Yanish
Reyat, Jasmeet S.
Schotten, Ulrich
Sommerfeld, Laura C.
Zeemering, Stef
Ziegler, André
Gkoutos, Georgios V.
Kirchhof, Paulus
Fabritz, Larissa
Matèria: Fibril·lació auricular
Factors de risc en les malalties
Atrial Fibrillation
Risk Factors
Data de publicació: 5-oct-2023
Resum: Early detection of atrial fibrillation (AF) enables initiation of anticoagulation and early rhythm control therapy to reduce stroke, cardiovascular death, and heart failure. In a cross-sectional, observational study, we aimed to identify a combination of circulating biomolecules reflecting different biological processes to detect prevalent AF in patients with cardiovascular conditions presenting to hospital. Twelve biomarkers identified by reviewing literature and patents were quantified on a high-precision, high-throughput platform in 1485 consecutive patients with cardiovascular conditions (median age 69 years [Q1, Q3 60, 78]; 60% male). Patients had either known AF (45%) or AF ruled out by 7-day ECG-monitoring. Logistic regression with backward elimination and a neural network approach considering 7 key clinical characteristics and 12 biomarker concentrations were applied to a randomly sampled discovery cohort (n=933) and validated in the remaining patients (n=552). In addition to age, sex, and body mass index (BMI), BMP10, ANGPT2, and FGF23 identified patients with prevalent AF (AUC 0.743 [95% CI 0.712, 0.775]). These circulating biomolecules represent distinct pathways associated with atrial cardiomyopathy and AF. Neural networks identified the same variables as the regression-based approach. The validation using regression yielded an AUC of 0.719 (95% CI 0.677, 0.762), corroborated using deep neural networks (AUC 0.784 [95% CI 0.745, 0.822]). Age, sex, BMI and three circulating biomolecules (BMP10, ANGPT2, FGF23) are associated with prevalent AF in unselected patients presenting to hospital. Findings should be externally validated. Results suggest that age and different disease processes approximated by these three biomolecules contribute to AF in patients. Our findings have the potential to improve screening programs for AF after external validation.
Nota: Reproducció del document publicat a: https://doi.org/10.1038/s41598-023-42331-7
És part de: Scientific Reports, 2023, vol. 13, num. 1, p. 16743
URI: https://hdl.handle.net/2445/206207
Recurs relacionat: https://doi.org/10.1038/s41598-023-42331-7
ISSN: 2045-2322
Apareix en les col·leccions:Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)

Fitxers d'aquest document:
Fitxer Descripció DimensionsFormat 
s41598-023-42331-7.pdf2.17 MBAdobe PDFMostrar/Obrir


Aquest document està subjecte a una Llicència Creative Commons Creative Commons