Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/206840
Full metadata record
DC FieldValueLanguage
dc.contributor.authorImig, Cordelia-
dc.contributor.authorLópez Murcia, Francisco José-
dc.contributor.authorMaus, Lydia-
dc.contributor.authorHojas García-Plaza, Inés-
dc.contributor.authorMortensen, Lena Sünke-
dc.contributor.authorSchwark, Manuela-
dc.contributor.authorSchwarze, Valentin-
dc.contributor.authorAngibaud, Julie-
dc.contributor.authorNägerl, U. Valentin-
dc.contributor.authorTaschenberger, Holger-
dc.contributor.authorBrose, Nils-
dc.contributor.authorCooper, Benjamin H.-
dc.date.accessioned2024-01-31T15:56:17Z-
dc.date.available2024-01-31T15:56:17Z-
dc.date.issued2020-12-
dc.identifier.issn0896-6273-
dc.identifier.urihttp://hdl.handle.net/2445/206840-
dc.description.abstractElectron microscopy can resolve synapse ultrastructure with nanometer precision, but the capture of time-resolved, activity-dependent synaptic membrane-trafficking events has remained challenging, particularly in functionally distinct synapses in a tissue context. We present a method that combines optogenetic stimulation-coupled cryofixation ("flash-and-freeze") and electron microscopy to visualize membrane trafficking events and synapse-state-specific changes in presynaptic vesicle organization with high spatiotemporal resolution in synapses of cultured mouse brain tissue. With our experimental workflow, electrophysiological and "flash-and-freeze" electron microscopy experiments can be performed under identical conditions in artificial cerebrospinal fluid alone, without the addition of external cryoprotectants, which are otherwise needed to allow adequate tissue preservation upon freezing. Using this approach, we reveal depletion of docked vesicles and resolve compensatory membrane recycling events at individual presynaptic active zones at hippocampal mossy fiber synapses upon sustained stimulation.-
dc.format.extent47 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherCell Press-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.neuron.2020.09.004-
dc.relation.ispartofNeuron, 2020, vol. 108, num.5, p. 843-860-
dc.relation.urihttps://doi.org/10.1016/j.neuron.2020.09.004-
dc.rightscc-by-nc-nd (c) Imig, Cordelia et al, 2020-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceArticles publicats en revistes (Patologia i Terapèutica Experimental)-
dc.subject.classificationMicroscòpia electrònica-
dc.subject.classificationCervell-
dc.subject.classificationSinapsi-
dc.subject.otherElectron microscopy-
dc.subject.otherBrain-
dc.subject.otherSynapses-
dc.titleUltrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec726308-
dc.date.updated2024-01-31T15:56:17Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid32991831-
Appears in Collections:Articles publicats en revistes (Patologia i Terapèutica Experimental)

Files in This Item:
File Description SizeFormat 
253344.pdf39.33 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons