Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/207171
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastillo Reyes, Octavio-
dc.contributor.authorModesto, David-
dc.contributor.authorQueralt i Capdevila, Pilar-
dc.contributor.authorMarcuello Pascual, Alejandro-
dc.contributor.authorLedo Fernández, Juanjo-
dc.contributor.authorAmor-Martin, Adrian-
dc.contributor.authorde la Puente, Josep-
dc.contributor.authorGarcía-Castillo, Luis Emilio-
dc.date.accessioned2024-02-05T16:30:28Z-
dc.date.available2024-02-05T16:30:28Z-
dc.date.issued2022-03-01-
dc.identifier.issn0098-3004-
dc.identifier.urihttp://hdl.handle.net/2445/207171-
dc.description.abstractWe present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source electromagnetic methods in frequency-domain. We assess the accuracy, robustness, and performance of the code using a set of reference models developed by the MT community in well-known reported workshops. The scale and geological properties of these 3D MT setups are challenging, making them ideal for addressing a rigorous validation. Our numerical assessment proves that this new algorithm can produce the expected solutions for arbitrarily 3D MT models. Also, our extensive experimental results reveal four main insights: (1) high-order discretizations in conjunction with tailored meshes can offer excellent accuracy; (2) a rigorous mesh design based on the skin-depth principle can be beneficial for the solution of the 3D MT problem in terms of numerical accuracy and run-time; (3) high-order polynomial basis functions achieve better speed-up and parallel efficiency ratios than low-order polynomial basis functions on cutting-edge HPC platforms; (4) a triple helix approach based on HEFEM, tailored meshes, and HPC can be extremely competitive for the solution of realistic and complex 3D MT models and geophysical electromagnetics in general.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier Ltd-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.cageo.2021.105030-
dc.relation.ispartofComputers & Geosciences, 2022, vol. 160-
dc.relation.urihttps://doi.org/10.1016/j.cageo.2021.105030-
dc.rightscc-by-nc-nd (c) Elsevier Ltd, 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceArticles publicats en revistes (Dinàmica de la Terra i l'Oceà)-
dc.subject.classificationProspecció magnetotel·lúrica-
dc.subject.classificationProspecció geofísica-
dc.subject.classificationElectromagnetisme-
dc.subject.otherMagnetotelluric prospecting-
dc.subject.otherGeophysical exploration-
dc.subject.otherElectromagnetism-
dc.title3D magnetotelluric modeling using high-order tetrahedral Nédélec elements on massively parallel computing platforms-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec718060-
dc.date.updated2024-02-05T16:30:28Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Dinàmica de la Terra i l'Oceà)

Files in This Item:
File Description SizeFormat 
245276.pdf1.6 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons