Por favor, use este identificador para citar o enlazar este documento: https://hdl.handle.net/2445/208101
Título: A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
Autor: Jiao, Wei
Atwal, Gurnit
Polak, Paz
Karlic, Rosa
Cuppen, Edwin
PCAWG Tumor Subtypes and Clinical Translation Working Group
Danyi, Alexandra
de Ridder, Jeroen
van Herpen, Carla
Lolkema, Martijn P.
Steeghs, Neeltje
Getz, Gad
Morris, Quaid D.
Stein, Lincoln D.
PCAWG Consortium
Deu-Pons, Jordi
Frigola, Joan
González-Pérez, Abel
Muiños, Ferran
Mularoni, Loris
Pich, Oriol
Reyes-Salazar, Iker
Rubio-Perez, Carlota
Sabarinathan, Radhakrishnan
Tamborero, David
Aymerich Gregorio, Marta
Campo Güerri, Elias
López Guillermo, Armando
Gelpi Buchaca, Josep Lluís
Rabionet Janssen, Raquel
Materia: Mutació (Biologia)
Genomes
Metàstasi
Mutation (Biology)
Genomes
Metastasis
Fecha de publicación: 5-feb-2020
Publicado por: Nature Publishing Group
Resumen: In cancer, the primary tumour's organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the accuracy of trained pathologists when presented with a metastatic tumour without knowledge of the primary. Surprisingly, adding information on driver mutations reduced accuracy. Our results have clinical applicability, underscore how patterns of somatic passenger mutations encode the state of the cell of origin, and can inform future strategies to detect the source of circulating tumour DNA.
Nota: Reproducció del document publicat a: https://doi.org/https://doi.org/10.1038/s41467-019-13825-8
Es parte de: Nature Communications, 2020, vol. 11, num.1, p. 1-12
URI: https://hdl.handle.net/2445/208101
Recurso relacionado: https://doi.org/https://doi.org/10.1038/s41467-019-13825-8
ISSN: 2041-1723
Aparece en las colecciones:Articles publicats en revistes (Fonaments Clínics)
Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))

Archivos de este documento:
Archivo Descripción DimensionesFormato 
255384.pdf788.87 kBAdobe PDFMostrar/Abrir


Este documento está sujeto a una Licencia Creative Commons Creative Commons