Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/208111
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCoderch Negra, Ma. Luisa-
dc.contributor.authorAlonso, Cristina-
dc.contributor.authorCalpena Campmany, Ana Cristina-
dc.contributor.authorPérez García, M. Lluïsa (Maria Lluïsa)-
dc.contributor.authorClares Naveros, Beatriz-
dc.contributor.authorRamos, Anderson-
dc.contributor.authorMartí, Meritxell-
dc.date.accessioned2024-02-27T12:14:25Z-
dc.date.available2024-02-27T12:14:25Z-
dc.date.issued2023-11-29-
dc.identifier.issn1999-4923-
dc.identifier.urihttp://hdl.handle.net/2445/208111-
dc.description.abstract<p>The permeability of the oral or nasal mucosa is higher than that of the skin. Mucosa permeability</p><p>depends mainly on the thickness and keratinization degree of the tissues. Their permeability</p><p>barrier is conditioned by the presence of certain lipids. This work has the main aim of reinforcing the</p><p>barrier effect of oral mucosa with a series of formulations to reduce permeation. Transmembrane</p><p>water loss of different formulations was evaluated, and three of them were selected to be tested on</p><p>the sublingual mucosa permeation of drugs. Caffeine, ibuprofen, dexamethasone, and ivermectin</p><p>were applied on porcine skin, mucosa, and modified mucosa in order to compare the effectiveness of</p><p>the formulations. A similar permeation profile was obtained in the different membranes: caffeine</p><p>> ibuprofen~dexamethasone > ivermectin. The most efficient formulation was a liposomal formulation</p><p>composed of lipids that are present in the skin stratum corneum. Impermeability provided</p><p>by this formulation was notable mainly for the low-molecular-weight compounds, decreasing their</p><p>permeability coefficient by between 40 and 80%. The reinforcement of the barrier function of mucosa</p><p>provides a reduction or prevention of the permeation of different actives, which could be extrapolated</p><p>to toxic compounds such as viruses, contaminants, toxins, etc.</p>-
dc.format.extent1 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/https://doi.org/10.3390/pharmaceutics15122698-
dc.relation.ispartofPharmaceutics, 2023, vol. 15, p. 2698-
dc.relation.urihttps://doi.org/https://doi.org/10.3390/pharmaceutics15122698-
dc.rightscc-by (c) Coderch, L. et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)-
dc.subject.classificationMembrana mucosa-
dc.subject.classificationMucosa gastrointestinal-
dc.subject.otherMucous membrane-
dc.subject.otherGastrointestinal mucosa-
dc.titlePermeation Protection by Waterproofing Mucosal Membranes-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec740787-
dc.date.updated2024-02-27T12:14:25Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)

Files in This Item:
File Description SizeFormat 
836630.pdf2.77 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons