Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/209500
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPankratov, Dimitrii-
dc.contributor.authorHidalgo Martínez, Silvia-
dc.contributor.authorKarman, Cheryl-
dc.contributor.authorGerzhik, Anastasia-
dc.contributor.authorGomila Lluch, Gabriel-
dc.contributor.authorTrashin, Stanislav-
dc.contributor.authorBoschker, Henricus T. S.-
dc.contributor.authorGeelhoed, Jeanine S.-
dc.contributor.authorMayer, Dirk-
dc.contributor.authorWael, Karolien de-
dc.contributor.authorMeysman, Filip J.R.-
dc.date.accessioned2024-04-08T08:58:04Z-
dc.date.available2024-04-08T08:58:04Z-
dc.date.issued2024-06-01-
dc.identifier.issn1878-562X-
dc.identifier.urihttp://hdl.handle.net/2445/209500-
dc.description.abstractCable bacteria are filamentous, multicellular microorganisms that display an exceptional form of biological electron transport across centimeter-scale distances. Currents are guided through a network of nickel-containing protein fibers within the cell envelope. Still, the mechanism of long-range conduction remains unresolved. Here, we characterize the conductance of the fiber network under dry and wet, physiologically relevant, conditions. Our data reveal that the fiber conductivity is high (median value: 27 S cm−1; range: 2 to 564 S cm−1), does not show any redox signature, has a low thermal activation energy (Ea = 69 ± 23 meV), and is not affected by humidity or the presence of ions. These features set the nickel-based conduction mechanism in cable bacteria apart from other known forms of biological electron transport. As such, conduction resembles that of an organic semi-metal with a high charge carrier density. Our observation that biochemistry can synthesize an organo-metal-like structure opens the way for novel bio-based electronic technologies. © 2024 The Authors-
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.bioelechem.2024.108675-
dc.relation.ispartofBioelectrochemistry, 2024, vol. 157-
dc.relation.urihttps://doi.org/10.1016/j.bioelechem.2024.108675-
dc.rightscc by (c) Pankratov, Dimitrii et al, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))-
dc.subject.classificationTransport d'electrons-
dc.subject.classificationBacteris patògens-
dc.subject.otherElectron transport-
dc.subject.otherPathogenic bacteria-
dc.titleThe organo-metal-like nature of long-range conduction in cable bacteria-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2024-04-03T11:02:55Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.idimarina6608048-
dc.identifier.pmid38422765-
Appears in Collections:Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
2024_Bioelectrochemistry_TheOrgano_GomilaG.pdf2.88 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons