Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/211880
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArnedo Pac, Claudia-
dc.contributor.authorMuiños Ballester, Ferran-
dc.contributor.authorGonzález Pérez, Abel David-
dc.contributor.authorLópez Bigas, Núria-
dc.date.accessioned2024-05-24T16:16:50Z-
dc.date.available2024-05-24T16:16:50Z-
dc.date.issued2024-01-01-
dc.identifier.issnArnedo-Pac C, Muiños F, Gonzalez-Perez A, Lopez-Bigas N (2024). Hotspot propensity across mutational processes. Molecular Systems Biology, 20(1), 6-27. DOI: 10.1038/s44320-023-00001-w-
dc.identifier.urihttp://hdl.handle.net/2445/211880-
dc.description.abstractThe sparsity of mutations observed across tumours hinders our ability to study mutation rate variability at nucleotide resolution. To circumvent this, here we investigated the propensity of mutational processes to form mutational hotspots as a readout of their mutation rate variability at single base resolution. Mutational signatures 1 and 17 have the highest hotspot propensity (5-78 times higher than other processes). After accounting for trinucleotide mutational probabilities, sequence composition and mutational heterogeneity at 10 Kbp, most (94-95%) signature 17 hotspots remain unexplained, suggesting a significant role of local genomic features. For signature 1, the inclusion of genome-wide distribution of methylated CpG sites into models can explain most (80-100%) of the hotspot propensity. There is an increased hotspot propensity of signature 1 in normal tissues and de novo germline mutations. We demonstrate that hotspot propensity is a useful readout to assess the accuracy of mutation rate models at nucleotide resolution. This new approach and the findings derived from it open up new avenues for a range of somatic and germline studies investigating and modelling mutagenesis.© 2023. The Author(s).-
dc.format.extentnull-
dc.format.mimetypeapplication/pdf-
dc.language.isoEnglish-
dc.relation.isformatofhttps://doi.org/10.1038/s44320-023-00001-w-
dc.relation.ispartofMolecular Systems Biology, 2024, 20, 1, 6-27-
dc.relation.urihttps://doi.org/10.1038/s44320-023-00001-w-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))-
dc.subjectAgricultural and biological sciences (all)-
dc.subjectAgricultural and biological sciences (miscellaneous)-
dc.subjectApplied mathematics-
dc.subjectBiochemistry & molecular biology-
dc.subjectBiochemistry, genetics and molecular biology (all)-
dc.subjectBiochemistry, genetics and molecular biology (miscellaneous)-
dc.subjectBiotecnología-
dc.subjectCiências biológicas ii-
dc.subjectComputational theory and mathematics-
dc.subjectGeneral agricultural and biological sciences-
dc.subjectGeneral biochemistry,genetics and molecular biology-
dc.subjectGeneral immunology and microbiology-
dc.subjectGeneral medicine-
dc.subjectImmunology and microbiology (all)-
dc.subjectImmunology and microbiology (miscellaneous)-
dc.subjectInformation systems-
dc.subjectMedicine (miscellaneous)-
dc.titleHotspot propensity across mutational processes-
dc.typearticle-
dc.date.updated2024-05-23T11:13:14Z-
dc.identifier.idimarina6606380-
Appears in Collections:Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))

Files in This Item:
File Description SizeFormat 
Arnedo_et_al_MolSysBiol_2024.pdf41 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons