Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/213432
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFoote, Hayden R.-
dc.contributor.authorBesla, Gurtina-
dc.contributor.authorMocz, Philip-
dc.contributor.authorGaravito-Camargo, Nicolás-
dc.contributor.authorLancaster, Lachlan-
dc.contributor.authorSparre, Martin-
dc.contributor.authorCunningham, Emily C.-
dc.contributor.authorVogelsberger, Mark-
dc.contributor.authorGómez, Facundo A.-
dc.contributor.authorLaporte, Chervin F. P.-
dc.date.accessioned2024-06-19T19:07:45Z-
dc.date.available2024-06-19T19:07:45Z-
dc.date.issued2023-
dc.identifier.issn0004-637X-
dc.identifier.urihttp://hdl.handle.net/2445/213432-
dc.description.abstractThe Large Magellanic Cloud (LMC) will induce a dynamical friction (DF) wake on infall to the Milky Way (MW). The MW's stellar halo will respond to the gravity of the LMC and the dark matter (DM) wake, forming a stellar counterpart to the DM wake. This provides a novel opportunity to constrain the properties of the DM particle. We present a suite of high-resolution, windtunnel-style simulations of the LMC's DF wake that compare the structure, kinematics, and stellar tracer response of the DM wake in cold DM (CDM), with and without self-gravity, versus fuzzy DM (FDM) with ma = 10−23 eV. We conclude that the self-gravity of the DM wake cannot be ignored. Its inclusion raises the wake's density by ∼10%, and holds the wake together over larger distances (∼50 kpc) than if self-gravity is ignored. The DM wake's mass is comparable to the LMC's infall mass, meaning the DM wake is a significant perturber to the dynamics of MW halo tracers. An FDM wake is more granular in structure and is ∼20% dynamically colder than a CDM wake, but with comparable density. The granularity of an FDM wake increases the stars' kinematic response at the percent level compared to CDM, providing a possible avenue of distinguishing a CDM versus FDM wake. This underscores the need for kinematic measurements of stars in the stellar halo at distances of 70–100 kpc.-
dc.format.extent1 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherInstitute of Physics (IOP)-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3847/1538-4357/ace533-
dc.relation.ispartofAstrophysical Journal, 2023-
dc.relation.urihttps://doi.org/10.3847/1538-4357/ace533-
dc.rights(c) American Astronomical Society, 2023-
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)-
dc.subject.classificationHalos (Meteorologia)-
dc.subject.classificationMatèria fosca (Astronomia)-
dc.subject.classificationCinemàtica-
dc.subject.classificationNúvols-
dc.subject.otherHalos (Meteorology)-
dc.subject.otherDark matter (Astronomy)-
dc.subject.otherKinematics-
dc.subject.otherClouds-
dc.titleStructure, Kinematics, and Observability of the Large Magellanic Cloud's Dynamical Friction Wake in Cold versus Fuzzy Dark Matter-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec742275-
dc.date.updated2024-06-19T19:07:50Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))
Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
841733.pdf2.77 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.