Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/213865
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBertrán Serra, Enric-
dc.contributor.authorMusheghyan Avetisyan, Arevik-
dc.contributor.authorChaitoglou, Stefanos-
dc.contributor.authorAmade Rovira, Roger-
dc.contributor.authorAlshaikh, Islam-
dc.contributor.authorPantoja Suárez, Luis Fernando-
dc.contributor.authorAndújar Bella, José Luis-
dc.contributor.authorJawhari, Tariq-
dc.contributor.authorPérez del Pino, Ángel-
dc.contributor.authorGiorgy, Enikö-
dc.date.accessioned2024-06-27T17:52:03Z-
dc.date.available2024-06-27T17:52:03Z-
dc.date.issued2022-11-03-
dc.identifier.issn0169-4332-
dc.identifier.urihttp://hdl.handle.net/2445/213865-
dc.description.abstractIt is now clear that growing flat graphene nanostructures from the gas phase on planar substrates is possible. One of the keys to success ¿particularly in producing a very large specific surface in a reduced space¿ is the use of 3D carbon nanostructures (i.e., vertical graphene nanowalls, VGNWs) over a planar substrate as a growth template for the deposition of electrochemically active materials (as, for example, transition metal oxides (TMO)). Vertical graphene nanowalls, also known as petal-like, vertical graphene flakes or vertical graphene, can achieve a very large specific surface area of 1100 m2/g, which is comparable to or greater than that of carbon nanotubes ¿the reference material for its use in high-performance supercapacitors or in other energy-related applications requiring a large active surface area. Vertical graphene nanowalls also exhibit high vertical and in-plane electrical conductivity when grown on metal electrodes, which benefits their use in electrochemical applications. Here, we focus on the growth of VGNWs on flexible stainless-steel substrates (SS310), in principle suitable for applications to electrodes of electrochemical systems (batteries, supercapacitors, catalysts), by inductively coupled plasma chemical vapour deposition (ICP-CVD), from methane as a carbon precursor, in a wide range of temperatures (575 to 900 ◦C). We will discuss the effect of growth temperature on morphological and structural characteristics of VGNWs based on the results of Raman spectroscopy and field emission scanning electron microscopy (FE-SEM) analysis. Because the nanostructures of graphene nanowalls reported to date are, for the most part, based on multi-layered graphene, here we seek to highlight the effect of temperature on the number of atomic layers of VGNW. In the 700-750 ◦C range, and under the plasma conditions explored, vertical graphene nanowalls are bilayer, which is foreseen to directly affect the magnitude of the VGNW specific surface.-
dc.format.extent15 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.apsusc.2022.155530-
dc.relation.ispartofApplied Surface Science, 2022, vol. 610, num.155530, p. 1-15-
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2022.155530-
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceArticles publicats en revistes (Física Aplicada)-
dc.subject.classificationGrafè-
dc.subject.classificationMaterials nanoestructurats-
dc.subject.otherGraphene-
dc.subject.otherNanostructured materials-
dc.titleTemperature-modulated synthesis of vertically oriented atomic bilayer graphene nanowalls grown on stainless steel by inductively coupled plasma chemical vapour deposition-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec732784-
dc.date.updated2024-06-27T17:52:08Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física Aplicada)
Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))

Files in This Item:
File Description SizeFormat 
259768.pdf12.89 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons