Por favor, use este identificador para citar o enlazar este documento: https://hdl.handle.net/2445/214020
Título: Domain generalization in deep learning for contrast-enhanced imaging
Autor: Sendra-Balcells, Carla
Campello Román, Víctor Manuel
Martín-Isla, Carlos
Viladés Medel, David
Descalzo, Martín Luis
Guala, Andrea
Rodríguez-Palomares, José Fernando
Lekadir, Karim, 1977-
Materia: Aprenentatge automàtic
Imatges mèdiques
Imatges per ressonància magnètica
Diagnòstic per la imatge
Machine learning
Imaging systems in medicine
Magnetic resonance imaging
Diagnostic imaging
Fecha de publicación: 1-oct-2022
Publicado por: Elsevier Ltd
Resumen: Background: The domain generalization problem has been widely investigated in deep learning for noncontrast imaging over the last years, but it received limited attention for contrast-enhanced imaging. However, there are marked differences in contrast imaging protocols across clinical centers, in particular in the time between contrast injection and image acquisition, while access to multi-center contrast-enhanced image data is limited compared to available datasets for non-contrast imaging. This calls for new tools for generalizing single-domain, single-center deep learning models across new unseen domains and clinical centers in contrast-enhanced imaging. Methods: In this paper, we present an exhaustive evaluation of deep learning techniques to achieve generalizability to unseen clinical centers for contrast-enhanced image segmentation. To this end, several techniques are investigated, optimized and systematically evaluated, including data augmentation, domain mixing, transfer learning and domain adaptation. To demonstrate the potential of domain generalization for contrast-enhanced imaging, the methods are evaluated for ventricular segmentation in contrast-enhanced cardiac magnetic resonance imaging (MRI). Results: The results are obtained based on a multi-center cardiac contrast-enhanced MRI dataset acquired in four hospitals located in three countries (France, Spain and China). They show that the combination of data augmentation and transfer learning can lead to single-center models that generalize well to new clinical centers not included during training. Conclusions: Single-domain neural networks enriched with suitable generalization procedures can reach and even surpass the performance of multi-center, multi-vendor models in contrast-enhanced imaging, hence eliminating the need for comprehensive multi-center datasets to train generalizable models.
Nota: Reproducció del document publicat a: https://doi.org/10.1016/j.compbiomed.2022.106052
Es parte de: Computers in Biology and Medicine, 2022, vol. 149
URI: https://hdl.handle.net/2445/214020
Recurso relacionado: https://doi.org/10.1016/j.compbiomed.2022.106052
ISSN: 0010-4825
Aparece en las colecciones:Articles publicats en revistes (Matemàtiques i Informàtica)

Archivos de este documento:
Archivo Descripción DimensionesFormato 
824745.pdf4.05 MBAdobe PDFMostrar/Abrir


Este documento está sujeto a una Licencia Creative Commons Creative Commons