Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/21445
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Serrano Moral, Ma. Ángeles (María Ángeles) | cat |
dc.contributor.author | Sagués i Mestre, Francesc | cat |
dc.date.accessioned | 2012-01-13T13:31:50Z | - |
dc.date.available | 2012-01-13T13:31:50Z | - |
dc.date.issued | 2011-05-19 | - |
dc.identifier.issn | 1752-0509 | - |
dc.identifier.uri | https://hdl.handle.net/2445/21445 | - |
dc.description.abstract | Background: Network reconstructions at the cell level are a major development in Systems Biology. However, we are far from fully exploiting its potentialities. Often, the incremental complexity of the pursued systems overrides experimental capabilities, or increasingly sophisticated protocols are underutilized to merely refine confidence levels of already established interactions. For metabolic networks, the currently employed confidence scoring system rates reactions discretely according to nested categories of experimental evidence or model-based likelihood. Results: Here, we propose a complementary network-based scoring system that exploits the statistical regularities of a metabolic network as a bipartite graph. As an illustration, we apply it to the metabolism of Escherichia coli. The model is adjusted to the observations to derive connection probabilities between individual metabolite-reaction pairs and, after validation, to assess the reliability of each reaction in probabilistic terms. This network-based scoring system uncovers very specific reactions that could be functionally or evolutionary important, identifies prominent experimental targets, and enables further confirmation of modeling results. Conclusions: We foresee a wide range of potential applications at different sub-cellular or supra-cellular levels of biological interactions given the natural bipartivity of many biological networks. | eng |
dc.format.extent | 9 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | eng |
dc.publisher | BioMed Central | - |
dc.relation.isformatof | Reproducció del document publicat a: http://dx.doi.org/10.1186/1752-0509-5-76 | - |
dc.relation.ispartof | BMC Systems Biology 2011, 5:76 | - |
dc.relation.uri | http://dx.doi.org/10.1186/1752-0509-5-76 | - |
dc.rights | cc-by, (c) Serrano et al., 2011 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/2.0 | - |
dc.source | Articles publicats en revistes (Ciència dels Materials i Química Física) | - |
dc.subject.classification | Biologia de sistemes | cat |
dc.subject.classification | Química física | cat |
dc.subject.other | Systems biology | eng |
dc.subject.other | Physical and theoretical chemistry | eng |
dc.title | Network-based scoring system for genome-scale metabolic reconstructions | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 600854 | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
dc.identifier.pmid | 21595941 | - |
Appears in Collections: | Articles publicats en revistes (Ciència dels Materials i Química Física) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
600854.pdf | 955.2 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License