Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/214510
Title: Sumsets and projective curves
Author: Elías García, Joan
Keywords: Àlgebra commutativa
Successions (Matemàtica)
Corbes algebraiques
Commutative algebra
Sequences (Mathematics)
Algebraic curves
Issue Date: 25-Jun-2022
Publisher: Springer Verlag
Abstract: The aim of this note is to exploit a new relationship between additive combinatorics and the geometry of monomial projective curves. We associate to a finite set of non-negative integers $A=\left\{a_1, \ldots, a_n\right\}$ a monomial projective curve $C_A \subset \mathbb{P}_{\mathbf{k}}^{n-1}$ such that the Hilbert function of $C_A$ and the cardinalities of $s A:=\left\{a_{i_1}+\cdots+a_{i_s} \mid 1 \leq i_1 \leq \cdots \leq i_s \leq n\right\}$ agree. The singularities of $C_A$ determines the asymptotic behaviour of $|s A|$, equivalently the Hilbert polynomial of $C_A$, and the asymptotic structure of $S A$. We show that some additive inverse problems can be translate to the rigidity of Hilbert polynomials and we improve an upper bound of the Castelnuovo-Mumford regularity of monomial projective curves by using results of additive combinatorics.
Note: Reproducció del document publicat a: https://doi.org/10.1007/s00009-022-02108-0
It is part of: Mediterranean Journal of Mathematics, 2022, vol. 19
URI: https://hdl.handle.net/2445/214510
Related resource: https://doi.org/10.1007/s00009-022-02108-0
ISSN: 1660-5446
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
863305.pdf359.69 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons