Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/214510
Title: | Sumsets and projective curves |
Author: | Elías García, Joan |
Keywords: | Àlgebra commutativa Successions (Matemàtica) Corbes algebraiques Commutative algebra Sequences (Mathematics) Algebraic curves |
Issue Date: | 25-Jun-2022 |
Publisher: | Springer Verlag |
Abstract: | The aim of this note is to exploit a new relationship between additive combinatorics and the geometry of monomial projective curves. We associate to a finite set of non-negative integers $A=\left\{a_1, \ldots, a_n\right\}$ a monomial projective curve $C_A \subset \mathbb{P}_{\mathbf{k}}^{n-1}$ such that the Hilbert function of $C_A$ and the cardinalities of $s A:=\left\{a_{i_1}+\cdots+a_{i_s} \mid 1 \leq i_1 \leq \cdots \leq i_s \leq n\right\}$ agree. The singularities of $C_A$ determines the asymptotic behaviour of $|s A|$, equivalently the Hilbert polynomial of $C_A$, and the asymptotic structure of $S A$. We show that some additive inverse problems can be translate to the rigidity of Hilbert polynomials and we improve an upper bound of the Castelnuovo-Mumford regularity of monomial projective curves by using results of additive combinatorics. |
Note: | Reproducció del document publicat a: https://doi.org/10.1007/s00009-022-02108-0 |
It is part of: | Mediterranean Journal of Mathematics, 2022, vol. 19 |
URI: | https://hdl.handle.net/2445/214510 |
Related resource: | https://doi.org/10.1007/s00009-022-02108-0 |
ISSN: | 1660-5446 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
863305.pdf | 359.69 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License