Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/214933
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrat Aparicio, Aleix-
dc.contributor.authorBrasó Maristany, Fara-
dc.contributor.authorMartínez Sáez, Olga-
dc.contributor.authorSanfeliu, Esther-
dc.contributor.authorXia, Youli-
dc.contributor.authorBellet, Meritxell-
dc.contributor.authorGalván, Patricia-
dc.contributor.authorMartínez Pérez, Debora-
dc.contributor.authorPascual, Tomás-
dc.contributor.authorMarín Aguilera, Mercedes-
dc.contributor.authorRodríguez, Ana Belén-
dc.contributor.authorChic Ruché, Núria-
dc.contributor.authorAdamo, Barbara-
dc.contributor.authorParé, Laia-
dc.contributor.authorVidal, Maria-
dc.contributor.authorMargelí Vila, Mireia-
dc.contributor.authorBallana, Ester-
dc.contributor.authorGómez Rey, Marina-
dc.contributor.authorOliveira, Mafalda-
dc.contributor.authorFelip, Eudald-
dc.contributor.authorMatito, Judit-
dc.contributor.authorSánchez Bayona, Rodrigo-
dc.contributor.authorSuñol, Anna-
dc.contributor.authorSaura, Cristina-
dc.contributor.authorCiruelos, Eva-
dc.contributor.authorTolosa, Pablo-
dc.contributor.authorMuñoz, Montserrat-
dc.contributor.authorGonzález Farré, Blanca-
dc.contributor.authorVillagrasa, Patricia-
dc.contributor.authorParker, Joel S.-
dc.contributor.authorPerou, Charles M.-
dc.contributor.authorVivancos, Ana-
dc.date.accessioned2024-09-02T15:53:20Z-
dc.date.available2024-09-02T15:53:20Z-
dc.date.issued2023-03-01-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://hdl.handle.net/2445/214933-
dc.description.abstractLiquid biopsy has proven valuable in identifying individual genetic alterations; however, the ability of plasma ctDNA to capture complex tumor phenotypes with clinical value is unknown. To address this question, we have performed 0.5X shallow whole-genome sequencing in plasma from 459 patients with metastatic breast cancer, including 245 patients treated with endocrine therapy and a CDK4/6 inhibitor (ET + CDK4/6i) from 2 independent cohorts. We demonstrate that machine learning multi-gene signatures, obtained from ctDNA, identify complex biological features, including measures of tumor proliferation and estrogen receptor signaling, similar to what is accomplished using direct tumor tissue DNA or RNA profiling. More importantly, 4 DNA-based subtypes, and a ctDNA-based genomic signature tracking retinoblastoma loss-of-heterozygosity, are significantly associated with poor response and survival outcome following ET + CDK4/6i, independently of plasma tumor fraction. Our approach opens opportunities for the discovery of additional multi-feature genomic predictors coming from ctDNA in breast cancer and other cancer-types.-
dc.format.extent16 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41467-023-36801-9-
dc.relation.ispartofNature Communications, 2023, vol. 14, num.1-
dc.relation.urihttps://doi.org/10.1038/s41467-023-36801-9-
dc.rightscc-by (c) Prat Aleix et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Medicina)-
dc.subject.classificationADN-
dc.subject.classificationCèl·lules canceroses-
dc.subject.classificationBiòpsia-
dc.subject.classificationCàncer de mama-
dc.subject.classificationGenòmica-
dc.subject.otherDNA-
dc.subject.otherCancer cells-
dc.subject.otherBiopsy-
dc.subject.otherBreast cancer-
dc.subject.otherGenomics-
dc.titleCirculating tumor DNA reveals complex biological features with clinical relevance in metastatic breast cancer-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec748304-
dc.date.updated2024-09-02T15:53:20Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid36859416-
Appears in Collections:Articles publicats en revistes (Medicina)
Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)

Files in This Item:
File Description SizeFormat 
860273.pdf2.73 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons