Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215038
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVitrià i Marca, Jordi-
dc.contributor.authorCastro Castillo, Gerard-
dc.date.accessioned2024-09-06T10:25:04Z-
dc.date.available2024-09-06T10:25:04Z-
dc.date.issued2024-06-15-
dc.identifier.urihttps://hdl.handle.net/2445/215038-
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Jordi Vitrià i Marcaca
dc.description.abstract[en] The role of uncertainty quantification (UQ) has become indispensable with the advent of artificial intelligence and its application to the decision-making. This thesis leverages conformal prediction (CP) as its cornerstone, a pivotal methodology in the field of distribution-free and model-agnostic UQ, which stems from the notion of "conformalizing" predictions to data using the residuals to understand the errors distribution. In particular, in this work some strategies within the CP approach are theoretically justified, and its guarantees and limitations presented. Even though the CP paradigm was classically applied only under "data exchangeability" conditions, this work also reviews some of the most recent and non-trivial efforts to enable CP when this hypothesis is not fulfilled. Lastly, to practically demonstrate CP ability to provide prediction intervals with statistically valid coverage, different strategies are successfully applied both to a tabular data regression problem and to a time series forecasting problem.ca
dc.format.extent57 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Gerard Castro Castillo, 2024-
dc.rightscodi: AGPL (c) Gerard Castro Castillo, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttps://www.gnu.org/licenses/agpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades-
dc.subject.classificationIntel·ligència artificial-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationAnàlisi de regressió-
dc.subject.classificationTreballs de fi de màster-
dc.subject.otherArtificial intelligence-
dc.subject.otherMachine learning-
dc.subject.otherRegression analysis-
dc.subject.otherMaster's thesis-
dc.titleConformal prediction and beyondca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
tfm_castro_castillo_gerard.pdfMemòria6.75 MBAdobe PDFView/Open
conformal-prediction-main.zipCodi font3.94 MBzipView/Open


This item is licensed under a Creative Commons License Creative Commons