Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215091
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBalerdi Sarasola, Leire-
dc.contributor.authorFleitas, Pedro E.-
dc.contributor.authorBottieau, Emmanuel-
dc.contributor.authorGenton, Blaise-
dc.contributor.authorPetrone, Paula-
dc.contributor.authorMuñoz Gutiérrez, José-
dc.contributor.authorCamprubí, Daniel-
dc.date.accessioned2024-09-11T08:46:13Z-
dc.date.available2025-04-04T05:10:11Z-
dc.date.issued2024-04-05-
dc.identifier.issn1195-1982-
dc.identifier.urihttps://hdl.handle.net/2445/215091-
dc.description.abstractBackground: Early diagnosis is key to reducing the morbi-mortality associated with P. falciparum malaria among international travellers. However, access to microbiological tests can be challenging for some healthcare settings. Artificial Intelligence could improve the management of febrile travellers. Methods: Data from a multicentric prospective study of febrile travellers was obtained to build a machine-learning model to predict malaria cases among travellers presenting with fever. Demographic characteristics, clinical and laboratory variables were leveraged as features. Eleven machine-learning classification models were evaluated by 50-fold cross-validation in a Training set. Then, the model with the best performance, defined by the Area Under the Curve (AUC), was chosen for parameter optimization and evaluation in the Test set. Finally, a reduced model was elaborated with those features that contributed most to the model. Results: Out of eleven machine-learning models, XGBoost presented the best performance (mean AUC of 0.98 and a mean F1 score of 0.78). A reduced model (MALrisk) was developed using only six features: Africa as a travel destination, platelet count, rash, respiratory symptoms, hyperbilirubinemia and chemoprophylaxis intake. MALrisk predicted malaria cases with 100% (95%CI 96-100) sensitivity and 72% (95%CI 68-75) specificity. Conclusions: The MALrisk can aid in the timely identification of malaria in non-endemic settings, allowing the initiation of empiric antimalarials and reinforcing the need for urgent transfer in healthcare facilities with no access to malaria diagnostic tests. This resource could be easily scalable to a digital application and could reduce the morbidity associated with late diagnosis.-
dc.format.extent21 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherOxford University Press-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1093/jtm/taae054-
dc.relation.ispartofJournal of Travel Medicine, 2024-
dc.relation.urihttps://doi.org/10.1093/jtm/taae054-
dc.rights(c) International Society of Travel Medicine, 2024-
dc.sourceArticles publicats en revistes (Medicina)-
dc.subject.classificationMalària-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationMedicina tropical-
dc.subject.classificationViatges-
dc.subject.otherMalaria-
dc.subject.otherMachine learning-
dc.subject.otherTropical medicine-
dc.subject.otherTravels-
dc.titleMALrisk: a machine-learning-based tool to predict imported malaria in returned travellers with fever-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec749938-
dc.date.updated2024-09-11T08:46:13Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Medicina)
Articles publicats en revistes (ISGlobal)

Files in This Item:
File Description SizeFormat 
864824.pdf1.17 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.