Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215162
Title: Comparative analysis of open source large language models
Author: Fayos i Pérez, Victor
Director/Tutor: Ortiz Martínez, Daniel
Arpírez Vega, Julio César
Keywords: Tractament del llenguatge natural (Informàtica)
Sistemes informàtics interactius
Bots (Programes d'ordinador)
Treballs de fi de màster
Natural language processing (Computer science)
Interactive computer systems
Internet bots (Computer software)
Master's thesis
Issue Date: 30-Jun-2024
Abstract: [en] This study investigates the potential of using smaller, locally hosted language models (LLMs) to perform specific tasks traditionally handled by large LLMs, such as OpenAI’s Chat-GPT 3.5. With the growing integration of LLMs in corporate environments, concerns over costs, data privacy, and security have become prominent. By focusing on question answering and text summarization tasks, we compare the performance of several smaller models, including Flan T5 XXL, Phi 3 Mini, and Yi 1.5, against Chat-GPT 3.5. As the two experiments show, one on question answering and the second one on text summarization, this tasks can be done by the tested models at the same level than the state of the art Chat-GPT 3.5. Concluding that depending the use intended for the LLM one of the different models could best fit as the variety in the response structure and verbosity highly depends on the model selected.
Note: Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Daniel Ortiz Martínez
URI: https://hdl.handle.net/2445/215162
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
tfm_fayos_victor.pdfMemòria5.72 MBAdobe PDFView/Open
codi_font.zipCodi font17.19 MBzipView/Open


This item is licensed under a Creative Commons License Creative Commons