Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/215226
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRios Huguet, Arnau-
dc.contributor.advisorRozalén Sarmiento, Javier-
dc.contributor.authorMosteiro García, Jesús-
dc.date.accessioned2024-09-17T15:28:52Z-
dc.date.available2024-09-17T15:28:52Z-
dc.date.issued2024-07-
dc.identifier.urihttp://hdl.handle.net/2445/215226-
dc.descriptionMàster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2023-2024. Tutors: Arnau Rios Huguet, Javier Rozalén Sarmientoca
dc.description.abstractIn this work we compute the ground-state properties of one-dimensional systems composed of fully-polarized fermions interacting through an attractive Gaussian potential. If the interactions are able to overcome kinetic energy contributions, these particles can become bound without the presence of an external potential. We use Neural Quantum States, a technique which exploits deep neural networks as the ansatz for a Variational Monte Carlo. We adapt a previously presented network architecture, that was designed to enforce fermionic antisymmetry, to also include a mean-centering transformation. This fixes the system at the origin of space, overcoming numerical instabilities. Transfer learning from ansätze trained on systems trapped with an external potential is used to facilitate reaching a global energy minimum. We predict analytically and confirm computationally that, under certain conditions, these systems are fully characterized by their scattering length, giving rise to what we call “1D fermionic halo systems”. Our results suggest that the ground state energy decreases linearly with the amount of fermions and has an inverse quadratic dependence on the scattering lengthca
dc.format.extent26 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Mosteiro, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology-
dc.subject.classificationXarxes neuronals (Informàtica)-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationTreballs de fi de màster-
dc.subject.otherNeural networks (Computer science)-
dc.subject.otherMachine learning-
dc.subject.otherMaster's thesis-
dc.titleMachine learning for self-bound quantum systemseng
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology

Files in This Item:
File Description SizeFormat 
MOSTEIRO GARCÍA JESÚS.pdf12.18 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons