Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/215333
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Perez-Obiol, A. | - |
dc.contributor.author | Márquez Romero, Antonio | - |
dc.contributor.author | Menéndez Sánchez, Javier | - |
dc.contributor.author | Ríos Huguet, Arnau | - |
dc.contributor.author | Garcia-Saez, A. | - |
dc.contributor.author | Julia-Diaz, B | - |
dc.date.accessioned | 2024-09-20T14:24:06Z | - |
dc.date.available | 2024-09-20T14:24:06Z | - |
dc.date.issued | 2023-07-29 | - |
dc.identifier.issn | 2045-2322 | - |
dc.identifier.uri | https://hdl.handle.net/2445/215333 | - |
dc.description.abstract | The nuclear shell model is one of the prime many-body methods to study the structure of atomic nuclei, but it is hampered by an exponential scaling on the basis size as the number of particles increases. We present a shell-model quantum circuit design strategy to find nuclear ground states by exploiting an adaptive variational quantum eigensolver algorithm. Our circuit implementation is in excellent agreement with classical shell-model simulations for a dozen of light and medium-mass nuclei, including neon and calcium isotopes. We quantify the circuit depth, width and number of gates to encode realistic shell-model wavefunctions. Our strategy also addresses explicitly energy measurements and the required number of circuits to perform them. Our simulated circuits approach the benchmark results exponentially with a polynomial scaling in quantum resources for each nucleus. This work paves the way for quantum computing shell-model studies across the nuclear chart and our quantum resource quantification may be used in configuration-interaction calculations of other fermionic systems. | - |
dc.format.extent | 1 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Nature Publishing Group | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1038/s41598-023-39263-7 | - |
dc.relation.ispartof | Scientific Reports, 2023, vol. 13, p. 12291 | - |
dc.relation.uri | https://doi.org/10.1038/s41598-023-39263-7 | - |
dc.rights | cc-by (c) Perez-Obiol, A. et al., 2023 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.source | Articles publicats en revistes (Física Quàntica i Astrofísica) | - |
dc.subject.classification | Ordinadors quàntics | - |
dc.subject.classification | Protons | - |
dc.subject.classification | Neutrons | - |
dc.subject.other | Quantum computers | - |
dc.subject.other | Protons | - |
dc.subject.other | Neutrons | - |
dc.title | Nuclear shell‑model simulation in digital quantum computers | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 739011 | - |
dc.date.updated | 2024-09-20T14:24:06Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Física Quàntica i Astrofísica) Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
827543.pdf | 1.88 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License