Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215424
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPujol Vila, Oriol-
dc.contributor.advisorSeguí Mesquida, Santi-
dc.contributor.authorSánchez Salazar, Jaime Leonardo-
dc.date.accessioned2024-09-27T08:50:47Z-
dc.date.available2024-09-27T08:50:47Z-
dc.date.issued2024-06-30-
dc.identifier.urihttps://hdl.handle.net/2445/215424-
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Oriol Pujol Vila i Santi Seguí Mesquidaca
dc.description.abstractThis thesis investigates brand perception in different Large Language Models (LLMs), focusing on three brands: Apple, Samsung, and Huawei. We first established an understanding of brand perception and the construction of psychometrically sound tests. Leveraging this foundation, we defined four metrics across two dimensions, sentiment and preference, to facilitate a comprehensive analysis. In the sentiment dimension, we observed that the Gemma LLM exhibited consistent bias across all brands, whereas ChatGPT3.5 and ChatGPT4 displayed similar behavior for Apple and Samsung, with notable differences for Huawei. In the preference dimension, all studied LLMs demonstrated transitivity consistency, consistently preferring Apple over Samsung and Samsung over Huawei. Our findings highlight the potential for extensive analysis using the defined metrics, limited here by time constraints. We suggest several avenues for future research, including expanding the range of brands and LLMs analyzed, improving the question bank through collaboration with psychologists, and incorporating varied question connotations and mask questions to enrich the study’s depth. This study provides a methodological framework for assessing brand perception in LLMs, with implications for broader applications beyond the specific brands and models examined.ca
dc.format.extent53 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Jaime Leonardo Sánchez Salazar, 2024-
dc.rightscodi: GPL (c) Jaime Leonardo Sánchez Salazar, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades-
dc.subject.classificationTractament del llenguatge natural (Informàtica)-
dc.subject.classificationIntel·ligència artificial-
dc.subject.classificationImatge corporativa-
dc.subject.classificationTreballs de fi de màster-
dc.subject.otherNatural language processing (Computer science)-
dc.subject.otherArtificial intelligence-
dc.subject.otherCorporate image-
dc.subject.otherMaster's thesis-
dc.titleAnalyzing Brand Perception In LLMsca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
tfm_sanchez_salazar_jaume.pdfMemòria1.44 MBAdobe PDFView/Open
Analyzing-brands-in-LLMs-Master-Thesis--main.zipCodi font1.41 MBzipView/Open


This item is licensed under a Creative Commons License Creative Commons