Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215694
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBujaldón, Roger-
dc.contributor.authorBenamara, Majdi-
dc.contributor.authorDhahri, Ramzi-
dc.contributor.authorGómez, Elvira-
dc.contributor.authorSerrà , Albert-
dc.date.accessioned2024-10-11T13:49:47Z-
dc.date.issued2024-04-
dc.identifier.issn0045-6535-
dc.identifier.urihttps://hdl.handle.net/2445/215694-
dc.description.abstractWater treatment technologies need to go beyond the current control of organic contaminants and ensure access to potable water. However, existing methods are still costly and often inadequate. In this context, novel catalysts that improve the mineralization degree of a wider range of pharmaceuticals through more benign and less consuming methodologies are highly sought after. ZnO, especially when doped, is a well-known semiconductor that also excels in the photocatalytic removal of persistent organic pollutants. In this study, we investigated the effect of doping ZnO nanoparticles with either copper, gallium or indium on the structure, morphology, photophysical properties and photocatalytic mineralization of pharmaceuticals. Their architecture was further improved through the fabrication of composites, pairing the best performing doped ZnO with either BaFe12O19 or nickel nanoparticles. Their suitability was tested on a complex 60-ppm multi-pollutant solution (tetracycline, levofloxacin and lansoprazole). The activation strategy combined photocatalysis with peroxymonosulfate (PMS) as an environmentally friendly source of highly oxidative sulfate radicals. The alliance of doped ZnO and BaFe<sub>12</sub>O<sub>19</sub> was particularly successful, resulting in magnetic microcroquette-shaped composites with excellent inter-component synergy. In fact, indium outperformed the other proposed metal dopants, exceeding 97% mineralization after 1 h and achieving complete elimination after 3 h. All composites excelled in terms of reusability, with no catalytic loss after 10 consecutive cycles and minimal leakage of metal ions, highlighting their applicability in water remediation.-
dc.format.extent11 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier Ltd-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.chemosphere.2024.142127-
dc.relation.ispartofChemosphere, 2024, vol. 357, num.2024, p. 1-11-
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2024.142127-
dc.rightscc-by-nc-nd (c) Bujaldón, Roger, et al., 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationFotocatàlisi-
dc.subject.classificationContaminants-
dc.subject.classificationDepuració de l'aigua-
dc.subject.otherPhotocatalysis-
dc.subject.otherPollutants-
dc.subject.otherWater purification-
dc.titleAttuning doped ZnO-based composites for an effective light-driven mineralization of pharmaceuticals via PMS activation-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec748055-
dc.date.updated2024-10-11T13:49:48Z-
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess-
dc.embargo.lift2026-03-31-
dc.date.embargoEndDateinfo:eu-repo/date/embargoEnd/2026-03-31-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)
Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))

Files in This Item:
File Description SizeFormat 
859335.pdf15.24 MBAdobe PDFView/Open    Request a copy


Embargat   Document embargat fins el 31-3-2026


This item is licensed under a Creative Commons License Creative Commons