Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215820
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHernández-Herrera, Gilma-
dc.contributor.authorNavarro, Albert-
dc.contributor.authorMoriña, David-
dc.date.accessioned2024-10-16T13:49:38Z-
dc.date.available2024-10-16T13:49:38Z-
dc.date.issued2024-09-01-
dc.identifier.issn0361-0918-
dc.identifier.urihttps://hdl.handle.net/2445/215820-
dc.description.abstractImputation of missing values is a strategy for handling non-responses in surveys or data loss in measurement processes, which may be more effective than ignoring the losses and omitting them. The characteristics of variables presenting missing values must be considered when choosing the imputation method to be used; in particular when the variable is a count the literature dealing with this issue is scarce. If the variable has an excess of zeros it is necessary to consider models including parameters for handling zero-inflation. Likewise, if problems of over- or under-dispersion are observed, generalizations of the Poisson, such as the Hermite or Conway Maxwell Poisson distributions are recommended for carrying out imputation. The aim of this study was to assess the performance of various regression models in the imputation of a discrete variable based on Poisson generalizations, in comparison with classical counting models, through a comprehensive simulation study considering a variety of scenarios and a real data example. To do so we compared the results of estimations using only complete data, and using imputations based on the most common count models. The COMPoisson distribution provides in general better results in any dispersion scenario, especially when the amount of missing information is large.-
dc.format.extent16 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherTaylor & Francis-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1080/03610918.2022.2149805-
dc.relation.ispartofCommunications in Statistics-Simulation and Computation, 2024, vol. 53, num.9, p. 4363-4379-
dc.relation.urihttps://doi.org/10.1080/03610918.2022.2149805-
dc.rights(c) Taylor & Francis, 2024-
dc.sourceArticles publicats en revistes (Econometria, Estadística i Economia Aplicada)-
dc.subject.classificationAnàlisi de regressió-
dc.subject.classificationVariables (Matemàtica)-
dc.subject.classificationMatemàtica discreta-
dc.subject.otherRegression analysis-
dc.subject.otherVariables (Mathematics)-
dc.subject.otherDiscrete mathematics-
dc.titleRegression-based imputation of explanatory discrete missing data-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec732907-
dc.date.updated2024-10-16T13:49:38Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Econometria, Estadística i Economia Aplicada)

Files in This Item:
File Description SizeFormat 
259891.pdf376.68 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.