Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215884
Title: First step in the nuclear inverse Kohn-Sham problem: From densities to potentials
Author: Accorto, G.
Brandolini, P.
Marino, F.
Porro, A.
Scalesi, A.
Colò, Gianluca
Roca Maza, Xavier
Vigezzi, E.
Keywords: Teoria del funcional de densitat
Física nuclear
Estructura nuclear
Density functionals
Nuclear physics
Nuclear structure
Issue Date: 28-Feb-2020
Publisher: American Physical Society
Abstract: Nuclear density functional theory (DFT) plays a prominent role in the understanding of nuclear structure, being the approach with the widest range of applications. Hohenberg and Kohn theorems warrant the existence of a nuclear energy density functional (EDF), yet its form is unknown. Current efforts to build a nuclear EDF are hindered by the lack of a strategy for systematic improvement. In this context, alternative approaches should be pursued and, so far, an unexplored avenue is that related to the inverse DFT problem. DFT is based on the one-to-one correspondence between Kohn-Sham (KS) potentials and densities. The exact EDF produces the exact density, so that from the knowledge of experimental or ab initio densities one may deduce useful information through reverse engineering. The idea has already been proved to be useful in the case of electronic systems. The general problem should be dealt with in steps, and the objective of the present work is to focus on testing algorithms to extract the Kohn-Sham potential within the simplest ansatz from the knowledge of the experimental neutron and proton densities. We conclude that, while robust algorithms exist, the experimental densities present some critical aspects. Finally, we provide some perspectives for future works.
Note: Reproducció del document publicat a: https://doi.org/10.1103/PhysRevC.101.024315
It is part of: Physical Review C, 2020
URI: https://hdl.handle.net/2445/215884
Related resource: https://doi.org/10.1103/PhysRevC.101.024315
ISSN: 2469-9985
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
849992.pdf689.87 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.