Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216395
Title: Positive effects of high salinity can buffer the negative effects of experimental warming on functional traits of the seagrass Halophila ovalis.
Author: Ontoria Gómez, Yaiza
Webster, Chanelle L.
Said, Nicole E.
Ruiz, Juan M.
Pérez Vallmitjana, Marta
Romero, Javier (Romero Martinengo)
McMahon, Kathryn M.
Issue Date: 3-Jul-2020
Publisher: Elsevier Ltd
Abstract: Coastal ecosystems, and especially estuaries, are subject to environmental fluctuations that can be amplified by anthropogenic changes. Under a future scenario of global warming, temperature and salinity are likely to be altered and the persistence of macrophyte-dominated ecosystems can be compromised, particularly native or local seagrass communities. This study examined the response of the local seagrass Halophila ovalis to the joint effect of a short-term salinity increase and a transient temperature stress, through two mesocosm experiments. Warming caused a decline in Fv/Fm, TNC content in leaves and plant growth, and increased dark respiration, revealing clear detrimental symptoms of heat stress on plant metabolism and performance. Salinity increase in isolation favoured ramet survival. However, in combination with warming, salinity had a positive effect on Gross Pmax. This suggests that increased salinities might dampen the negative effects of high temperatures, buffering, to some extent, the impact of global warming in temperate estuaries.
Note: Versió postprint del document publicat a: https://doi.org/10.1016/j.marpolbul.2020.111404
It is part of: Marine Pollution Bulletin, 2020, vol. 158, p. 111404
URI: https://hdl.handle.net/2445/216395
Related resource: https://doi.org/10.1016/j.marpolbul.2020.111404
ISSN: 0025-326X
Appears in Collections:Articles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)

Files in This Item:
File Description SizeFormat 
235516.pdf1.35 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons