Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216545
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMárquez, David (Márquez Carreras)-
dc.date.accessioned2024-11-18T08:50:17Z-
dc.date.available2024-11-18T08:50:17Z-
dc.date.issued2015-06-17-
dc.identifier.issn1292-8100-
dc.identifier.urihttps://hdl.handle.net/2445/216545-
dc.description.abstractIn this paper we study some properties of the density for the law of the solution to a generalized multidimensional fractional kinetic equation driven by a Gaussian noise, white in time and correlated in space. The diffusion operator is the composition between the Bessel and Riesz potentials with any fractional parameters. We also establish Varadhan’s estimates for the solution to the equation obtained by perturbing the noise.-
dc.format.extent19 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherEDP Sciences-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1051/ps/2014015-
dc.relation.ispartofESAIM: Probability and Statistics (ESAIM: P&S), 2015, vol. 19, p. 81-99-
dc.relation.urihttps://doi.org/10.1051/ps/2014015-
dc.rights(c) EDP Sciences, 2015-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationEquacions diferencials parcials estocàstiques-
dc.subject.classificationProcessos gaussians-
dc.subject.classificationAnàlisi estocàstica-
dc.subject.classificationCamps aleatoris-
dc.subject.otherStochastic partial differential equations-
dc.subject.otherGaussian processes-
dc.subject.otherStochastic analysis-
dc.subject.otherRandom fields-
dc.titleSmall stochastic perturbations in a general fractional kinetic equation-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec642776-
dc.date.updated2024-11-18T08:50:17Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
176455.pdf292.35 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.