Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/216546
Title: | Stability for a class of semilinear fractional stochastic integral equations |
Author: | Fiel, Alan León, Jorge A. Márquez, David (Márquez Carreras) |
Keywords: | Equacions diferencials ordinàries Processos estocàstics Moviment brownià Ordinary differential equations Stochastic processes Brownian movements |
Issue Date: | 23-Jun-2016 |
Abstract: | In this paper we study some stability criteria for some semilinear integral equations with a function as initial condition and with additive noise, which is a Young integral that could be a functional of fractional Brownian motion. Namely, we consider stability in the mean, asymptotic stability, stability, global stability, and Mittag-Leffler stability. To do so, we use comparison results for fractional equations and an equation (in terms of Mittag-Leffler functions) whose family of solutions includes those of the underlying equation. |
Note: | Reproducció del document publicat a: https://doi.org/10.1186/s13662-016-0895-2 |
It is part of: | 2016 |
URI: | https://hdl.handle.net/2445/216546 |
Related resource: | https://doi.org/10.1186/s13662-016-0895-2 |
ISSN: | 1687-1847 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
199016.pdf | 1.69 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License