Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216546
Title: Stability for a class of semilinear fractional stochastic integral equations
Author: Fiel, Alan
León, Jorge A.
Márquez, David (Márquez Carreras)
Keywords: Equacions diferencials ordinàries
Processos estocàstics
Moviment brownià
Ordinary differential equations
Stochastic processes
Brownian movements
Issue Date: 23-Jun-2016
Abstract: In this paper we study some stability criteria for some semilinear integral equations with a function as initial condition and with additive noise, which is a Young integral that could be a functional of fractional Brownian motion. Namely, we consider stability in the mean, asymptotic stability, stability, global stability, and Mittag-Leffler stability. To do so, we use comparison results for fractional equations and an equation (in terms of Mittag-Leffler functions) whose family of solutions includes those of the underlying equation.
Note: Reproducció del document publicat a: https://doi.org/10.1186/s13662-016-0895-2
It is part of: 2016
URI: https://hdl.handle.net/2445/216546
Related resource: https://doi.org/10.1186/s13662-016-0895-2
ISSN: 1687-1847
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
199016.pdf1.69 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons