Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216547
Title: Delay Equations with Non-negativity Constraints Driven by a Hölder Continuous Function of Order $\beta \in\left(\frac{1}{3}, \frac{1}{2}\right)$
Author: Besalú, Mireia
Márquez, David (Márquez Carreras)
Rovira Escofet, Carles
Keywords: Integrals estocàstiques
Càlcul de Malliavin
Anàlisi estocàstica
Stochastic integrals
Malliavin calculus
Stochastic analysis
Issue Date: 2014
Publisher: Springer Verlag
Abstract: In this note we prove an existence and uniqueness result of solution for multidimensional delay differential equations with normal reflection and driven by a Hölder continuous function of order $\beta \in\left(\frac{1}{3}, \frac{1}{2}\right)$. We also obtain a bound for the supremum norm of this solution. As an application, we get these results for stochastic differential equations driven by a fractional Brownian motion with Hurst parameter $\mathrm{H} \in\left(\frac{1}{3}, \frac{1}{2}\right)$.
Note: Versió postprint del document publicat a: https://doi.org/10.1007/s11118-013-9365-6
It is part of: Potential Analysis, 2014, vol. 41, num.1, p. 117-141
URI: https://hdl.handle.net/2445/216547
Related resource: https://doi.org/10.1007/s11118-013-9365-6
ISSN: 0926-2601
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
175930.pdf248.05 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.