Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/216547
Title: | Delay Equations with Non-negativity Constraints Driven by a Hölder Continuous Function of Order $\beta \in\left(\frac{1}{3}, \frac{1}{2}\right)$ |
Author: | Besalú, Mireia Márquez, David (Márquez Carreras) Rovira Escofet, Carles |
Keywords: | Integrals estocàstiques Càlcul de Malliavin Anàlisi estocàstica Stochastic integrals Malliavin calculus Stochastic analysis |
Issue Date: | 2014 |
Publisher: | Springer Verlag |
Abstract: | In this note we prove an existence and uniqueness result of solution for multidimensional delay differential equations with normal reflection and driven by a Hölder continuous function of order $\beta \in\left(\frac{1}{3}, \frac{1}{2}\right)$. We also obtain a bound for the supremum norm of this solution. As an application, we get these results for stochastic differential equations driven by a fractional Brownian motion with Hurst parameter $\mathrm{H} \in\left(\frac{1}{3}, \frac{1}{2}\right)$. |
Note: | Versió postprint del document publicat a: https://doi.org/10.1007/s11118-013-9365-6 |
It is part of: | Potential Analysis, 2014, vol. 41, num.1, p. 117-141 |
URI: | https://hdl.handle.net/2445/216547 |
Related resource: | https://doi.org/10.1007/s11118-013-9365-6 |
ISSN: | 0926-2601 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
175930.pdf | 248.05 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.