Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216632
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSun, Y.-
dc.contributor.authorXia, P.-
dc.contributor.authorSheng, P.-
dc.contributor.authorWang, Chao-
dc.contributor.authorYou, J.-
dc.contributor.authorDeng, Q.-
dc.contributor.authorHe, Quiang-
dc.contributor.authorSirés Sadornil, Ignacio-
dc.contributor.authorYe, Z.-
dc.date.accessioned2024-11-20T00:13:37Z-
dc.date.issued2024-11-08-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://hdl.handle.net/2445/216632-
dc.description.abstractDeveloping cost-effective and durable cathodes with outstanding oxygen mass transport and selective two-electron oxygen reduction reaction (ORR) is crucial for large-scale H2O2 electrosynthesis. Herein, an oxygen vacancy-rich ZnO-modified air-breathing gas-diffusion electrode (ZnO-V/GDE) was fabricated, thus eliminating the cost of aeration while achieving remarkable O2 utilization efficiency and H2O2 selectivity. This novel cathode led to ultrahigh H2O2 yield of 1005.2 mg L−1 with selectivity of 74.6 %, outperforming both the raw and ZnO-modified air-breathing GDEs. Moreover, the practical applicability of ZnO-V/GDE was demonstrated by its high stability and effectiveness when treating micropollutants in wastewater by ZnO-V/GDE-based electro-Fenton process. Mechanistic insights unveiled the key roles of oxygen vacancies, which not only facilitate the O2 transport by creating a superhydrophobic interface and provide binding centers to O2, but also reduce the energy barrier of the rate-determining step (OOH*-to-H2O2), eventually enhancing the ORR performance.-
dc.format.extent1 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.cej.2024.157563-
dc.relation.ispartofChemical Engineering Journal, 2024, vol. 500, p. 157563-
dc.relation.urihttps://doi.org/10.1016/j.cej.2024.157563-
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationOxigen-
dc.subject.classificationAigua oxigenada-
dc.subject.classificationElectroquímica-
dc.subject.otherOxygen-
dc.subject.otherHydrogen peroxide-
dc.subject.otherElectrochemistry-
dc.titleRational design of an air-breathing gas-diffusion electrode with oxygen vacancy-rich ZnO for robust and durable H<sub>2</sub>O<sub>2</sub> electrosynthesis-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec751805-
dc.date.updated2024-11-20T00:13:37Z-
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess-
dc.embargo.lift2026-11-07-
dc.date.embargoEndDateinfo:eu-repo/date/embargoEnd/2026-11-07-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
870451.pdf612.94 kBAdobe PDFView/Open    Request a copy


Embargat   Document embargat fins el 7-11-2026


This item is licensed under a Creative Commons License Creative Commons