Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216655
Title: Asymptotic behaviour of the density in a parabolic SPDE
Author: Kohatsu, Arturo
Márquez, David (Márquez Carreras)
Sanz-Solé, Marta
Keywords: Grans desviacions
Càlcul de Malliavin
Equacions diferencials estocàstiques
Equacions diferencials parabòliques
Large deviations
Malliavin calculus
Stochastic differential equations
Parabolic differential equations
Issue Date: Apr-2001
Publisher: Springer Verlag
Abstract: Consider the density of the solution $X(t, x)$ of a stochastic heat equation with small noise at a fixed $t \in[0, T], x \in[0,1]$. In this paper we study the asymptotics of this density as the noise vanishes. A kind of Taylor expansion in powers of the noise parameter is obtained. The coefficients and the residue of the expansion are explicitly calculated. In order to obtain this result some type of exponential estimates of tail probabilities of the difference between the approximating process and the limit one is proved. Also a suitable iterative local integration by parts formula is developed.
Note: Versió postprint del document publicat a:
It is part of: Journal of Theoretical Probability, 2001, vol. 14, num.2, p. 427-462
URI: https://hdl.handle.net/2445/216655
ISSN: 0894-9840
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
68866.pdf367.58 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.