Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216723
Title: Waste-based nanoarchitectonics with face masks as valuable starting material for high-performance supercapacitors
Author: Srenscek-Nazzal, Joanna
Serafin, Jarosław
Kaminska, Adrianna
Dymerska, Anna
Mijowska, Ewa
Michalkiewicz, Beata
Keywords: COVID-19
Microplàstics
Carbonització
COVID-19
Microplastics
Carbonization
Issue Date: 26-Jul-2022
Publisher: Elsevier
Abstract: Surgical face masks waste is a source of microplastics (polymer fibres) and inorganic and organic compounds potentially hazardous for aquatic organisms during degradation in water. The monthly use of face masks in the world is about 129 billion for 7.8 billion people. Therefore, in this contribution the utilization of hazardous surgical face masks waste for fabrication of carbon-based electrode materials via KOH-activation and carbonization was investigated. The micro-mesoporous materials were obtained with specific surface areas in the range of 460 – 969 m2/g and a total pore volume of 0.311 – 0.635 cm3/g. The optimal sample showed superior electrochemical performance as an electrode material in supercapacitor in the three-electrode system, attaining 651.1F/g at 0.1 Ag−1 and outstanding capacitance retention of 98 % after a test cycle involving 50′000 cycles. It should be emphasized that capacitance retention is one of the most crucial requirements for materials used as the electrodes in the supercapacitor devices. In this strategy, potentially contaminated face masks, common pandemic waste, is recycled into highly valuable carbon material which can serve in practical applications overcoming the global energy crisis. What is more, all microorganisms, including coronaviruses that may be on/in the masks, are completely inactivated during KOH-activation and carbonization.
Note: Versió postprint del document publicat a: https://doi.org/10.1016/j.jcis.2022.07.098
It is part of: Journal of Colloid and Interface Science, 2022, vol. 627, p. 978-991
URI: https://hdl.handle.net/2445/216723
Related resource: https://doi.org/10.1016/j.jcis.2022.07.098
ISSN: 0021-9797
Appears in Collections:Articles publicats en revistes (Química Inorgànica i Orgànica)

Files in This Item:
File Description SizeFormat 
870224.pdf3.96 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons