Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/216908
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGallardo Pizarro, Antonio-
dc.contributor.authorPeyrony, Olivier-
dc.contributor.authorChumbita, Mariana-
dc.contributor.authorMonzo Gallo, Patricia-
dc.contributor.authorAiello, Tommaso Francesco-
dc.contributor.authorTeijon Lumbreras, Christian-
dc.contributor.authorGras, Emmanuelle-
dc.contributor.authorMensa Pueyo, Josep-
dc.contributor.authorSoriano Viladomiu, Alex-
dc.contributor.authorGarcia Vidal, Carolina-
dc.date.accessioned2024-12-03T16:33:08Z-
dc.date.available2025-03-07T06:10:10Z-
dc.date.issued2024-03-08-
dc.identifier.issn1478-7210-
dc.identifier.urihttps://hdl.handle.net/2445/216908-
dc.description.abstractIntroduction: Artificial intelligence (AI) and machine learning (ML) have the potential to revolutionize the management of febrile neutropenia (FN) and drive progress toward personalized medicine. Areas covered: In this review, we detail how the collection of a large number of high-quality data can be used to conduct precise mathematical studies with ML and AI. We explain the foundations of these techniques, covering the fundamentals of supervised and unsupervised learning, as well as the most important challenges, e.g. data quality, 'black box' model interpretation and overfitting. To conclude, we provide detailed examples of how AI and ML have been used to enhance predictions of chemotherapy-induced FN, detection of bloodstream infections (BSIs) and multidrug-resistant (MDR) bacteria, and anticipation of severe complications and mortality. Expert opinion: There is promising potential of implementing accurate AI and ML models whilst managing FN. However, their integration as viable clinical tools poses challenges, including technical and implementation barriers. Improving global accessibility, fostering interdisciplinary collaboration, and addressing ethical and security considerations are essential. By overcoming these challenges, we could transform personalized care for patients with FN.-
dc.format.extent27 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherTaylor & Francis-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1080/14787210.2024.2322445-
dc.relation.ispartofExpert Review of Anti-infective Therapy, 2024, vol. 22, num.4, p. 179-187-
dc.relation.urihttps://doi.org/10.1080/14787210.2024.2322445-
dc.rights(c) Taylor & Francis, 2024-
dc.sourceArticles publicats en revistes (Medicina)-
dc.subject.classificationNeutropènia-
dc.subject.classificationFebre-
dc.subject.classificationMalalts de càncer-
dc.subject.classificationIntel·ligència artificial-
dc.subject.classificationAprenentatge automàtic-
dc.subject.otherNeutropenia-
dc.subject.otherFever-
dc.subject.otherCancer patients-
dc.subject.otherArtificial intelligence-
dc.subject.otherMachine learning-
dc.titleImproving management of febrile neutropenia in oncology patients: the role of artificial intelligence and machine learning.-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec747911-
dc.date.updated2024-12-03T16:33:08Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.idimarina9389368-
dc.identifier.pmid38457198-
Appears in Collections:Articles publicats en revistes (Medicina)
Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)

Files in This Item:
File Description SizeFormat 
858646.pdf834.67 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.