Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217007
Title: Bandgap engineering of MXene compounds for water splitting
Author: Ontiveros Cruz, Diego
Viñes Solana, Francesc
Sousa Romero, Carmen
Keywords: Teoria del funcional de densitat
Compostos de carboni
Metalls de transició
Density functionals
Carbon compounds
Transition metals
Issue Date: 24-May-2023
Publisher: Royal Society of Chemistry
Abstract: MXene compounds, a recently discovered family of 2D materials, have been found to become semiconductors and photoactive when their pristine surfaces are functionalized with an electronegative termination. MXenes may present different compositions and structures, depending on the transition metal (M), the X-element (C or N), the stacking, and the termination position. The present work uses density functional theory calculations to engineer the bandgap of a wide range of MXenes by their structure, composition, and surface termination with oxygen, in order to find suitable materials for water splitting photocatalysis. Results show that pristine MXenes present metallic character in all cases, while adding the O-termination increases their chance of becoming a semiconductor. Group III and IV MXenes turn out to be the most promising bandgap systems for photocatalysis. Concerning the X element, C-MXenes exhibit more cases with a bandgap than N-MXenes, and, generally, with larger values. Factors such as the specific O-termination hollow site and stacking may affect the bandgap under certain circumstances, but such influences are found to be subtle and irregular. Finally, for all the cases presenting a bandgap larger than 1.23 eV, the minimum demanded for the water splitting process, the band alignment with respect to the water splitting half-reaction potentials was studied, obtaining Zr2CO2 as a promising photocatalyst for this process.
Note: Reproducció del document publicat a: https://doi.org/10.1039/d3ta01933k
It is part of: Journal of Materials Chemistry A, 2023, vol. 11, num.25, p. 13754-13764
URI: https://hdl.handle.net/2445/217007
Related resource: https://doi.org/10.1039/d3ta01933k
ISSN: 2050-7488
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
826777.pdf2.6 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons