Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217201
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorClop, Albert-
dc.contributor.advisorCiti, Giovanna-
dc.contributor.authorCircelli, Michele-
dc.contributor.otherUniversitat de Barcelona. Departament de Matemàtiques i Informàtica-
dc.date.accessioned2024-12-19T10:59:37Z-
dc.date.available2024-12-19T10:59:37Z-
dc.date.issued2024-07-03-
dc.identifier.urihttps://hdl.handle.net/2445/217201-
dc.description.abstractIn this thesis we adapted the problem of continuous congested optimal transport to the Heisenberg group, equipped with a sub-Riemannian metric: we restricted the set of admissible paths to the horizontal curves. We obtained the existence of equilibrium configurations, known as Wardrop Equilibria, through the minimization of a convex functional, over a suitable set of measures on the horizontal curves. Moreover, such equilibria induce trans­ port plans that solve a Monge-Kantorovic problem associated with a cost, depending on the congestion itself, which we rigorously defined. We also proved the equivalence between this problem and a minimization problem defined over the set of p-summable horizontal vector fields with prescribed divergence. We showed that this new problem admits a dual formulation as a classical minimization problem of Calculus of Variations. In addition, even the Monge-Kantorovich problem associated with the sub-Riemannian distance turns out to be equivalent to a minimization problem over measures on horizontal curves. Passing through the notion of horizontal transport density, we proved that the Monge-Kantorovich problem can also be formulated as a minimization problem with a divergence-type constraint. Its dual formulation is the well-known Kantorovich duality theorem. In the end, we treated the continuous congested optimal transport problem with orthotropic cost function: we proved the Lipschitz regularity for solutions to a pseudo q-Laplacian-type equation arising from it.ca
dc.format.extent189 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherUniversitat de Barcelona-
dc.rightscc by (c) Circelli, Michele, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceTesis Doctorals - Departament - Matemàtiques i Informàtica-
dc.subject.classificationVarietats de Riemann-
dc.subject.classificationAnells commutatius-
dc.subject.otherRiemannian manifolds-
dc.subject.otherCommutative rings-
dc.titleCongested Optimal Transport in the Heisenberg Groupca
dc.typeinfo:eu-repo/semantics/doctoralThesisca
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.identifier.tdxhttp://hdl.handle.net/10803/692999-
Appears in Collections:Tesis Doctorals - Departament - Matemàtiques i Informàtica

Files in This Item:
File Description SizeFormat 
MC_PhD_THESIS.pdf1.42 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons