Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217281
Title: Lower Bound for the Green Energy of Point Configurations in Harmonic Manifolds
Author: Beltrán, Carlos
de la Torre, Victor
Lizarte, Fatima
Keywords: Teoria del potencial (Matemàtica)
Superfícies de Riemann
Teoria de l'aproximació
Potential theory (Mathematics)
Riemann surfaces
Approximation theory
Issue Date: 1-Aug-2024
Publisher: Springer Verlag
Abstract: In this paper, we get the sharpest known to date lower bounds for the minimal Green energy of the compact harmonic manifolds of any dimension. Our proof generalizes previous ad-hoc arguments for the most basic harmonic manifold, i.e. the sphere, extending it to the general case and remarkably simplifying both the conceptual approach and the computations.
Note: Reproducció del document publicat a: https://doi.org/10.1007/s11118-023-10108-2
It is part of: Potential Analysis, 2024, vol. 61, num.2, p. 247-261
URI: https://hdl.handle.net/2445/217281
Related resource: https://doi.org/10.1007/s11118-023-10108-2
ISSN: 0926-2601
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870472.pdf530.54 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons