Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217281
Title: | Lower Bound for the Green Energy of Point Configurations in Harmonic Manifolds |
Author: | Beltrán, Carlos de la Torre, Victor Lizarte, Fatima |
Keywords: | Teoria del potencial (Matemàtica) Superfícies de Riemann Teoria de l'aproximació Potential theory (Mathematics) Riemann surfaces Approximation theory |
Issue Date: | 1-Aug-2024 |
Publisher: | Springer Verlag |
Abstract: | In this paper, we get the sharpest known to date lower bounds for the minimal Green energy of the compact harmonic manifolds of any dimension. Our proof generalizes previous ad-hoc arguments for the most basic harmonic manifold, i.e. the sphere, extending it to the general case and remarkably simplifying both the conceptual approach and the computations. |
Note: | Reproducció del document publicat a: https://doi.org/10.1007/s11118-023-10108-2 |
It is part of: | Potential Analysis, 2024, vol. 61, num.2, p. 247-261 |
URI: | https://hdl.handle.net/2445/217281 |
Related resource: | https://doi.org/10.1007/s11118-023-10108-2 |
ISSN: | 0926-2601 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
870472.pdf | 530.54 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License