Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217281
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBeltrán, Carlos-
dc.contributor.authorde la Torre, Victor-
dc.contributor.authorLizarte, Fatima-
dc.date.accessioned2025-01-07T12:05:39Z-
dc.date.available2025-01-07T12:05:39Z-
dc.date.issued2024-08-01-
dc.identifier.issn0926-2601-
dc.identifier.urihttps://hdl.handle.net/2445/217281-
dc.description.abstractIn this paper, we get the sharpest known to date lower bounds for the minimal Green energy of the compact harmonic manifolds of any dimension. Our proof generalizes previous ad-hoc arguments for the most basic harmonic manifold, i.e. the sphere, extending it to the general case and remarkably simplifying both the conceptual approach and the computations.-
dc.format.extent15 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Verlag-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s11118-023-10108-2-
dc.relation.ispartofPotential Analysis, 2024, vol. 61, num.2, p. 247-261-
dc.relation.urihttps://doi.org/10.1007/s11118-023-10108-2-
dc.rightscc by (c) Carlos Beltrán et al., 2024-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationTeoria del potencial (Matemàtica)-
dc.subject.classificationSuperfícies de Riemann-
dc.subject.classificationTeoria de l'aproximació-
dc.subject.otherPotential theory (Mathematics)-
dc.subject.otherRiemann surfaces-
dc.subject.otherApproximation theory-
dc.titleLower Bound for the Green Energy of Point Configurations in Harmonic Manifolds-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec751823-
dc.date.updated2025-01-07T12:05:39Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870472.pdf530.54 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons