Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217380
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lücke, Philipp | - |
dc.contributor.author | Bagaria, Joan | - |
dc.date.accessioned | 2025-01-13T08:29:51Z | - |
dc.date.available | 2025-01-13T08:29:51Z | - |
dc.date.issued | 2023-01 | - |
dc.identifier.issn | 0168-0072 | - |
dc.identifier.uri | https://hdl.handle.net/2445/217380 | - |
dc.description.abstract | We study Structural Reflection beyond Vopěnka's Principle, at the level of almosthuge cardinals and higher, up to rank-into-rank embeddings. We identify and classify new large cardinal notions in that region that correspond to some form of what we call Exact Structural Reflection (ESR). Namely, given cardinals $\kappa<\lambda$ and a class $\mathcal{C}$ of structures of the same type, the corresponding instance of ESR asserts that for every structure $A$ in $\mathcal{C}$ of rank $\lambda$, there is a structure $B$ in $\mathcal{C}$ of rank $\kappa$ and an elementary embedding of $B$ into $A$. Inspired by the statement of Chang's Conjecture, we also introduce and study sequential forms of ESR, which, in the case of sequences of length $\omega$, turn out to be very strong. Indeed, when restricted to $\Pi_1$-definable classes of structures they follow from the existence of $I 1$-embeddings, while for more complicated classes of structures, e.g., $\Sigma_2$, they are not known to be consistent. Thus, these principles unveil a new class of large cardinals that go beyond I1-embeddings, yet they may not fall into Kunen's Inconsistency. | - |
dc.format.extent | 32 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1016/j.apal.2022.103171 | - |
dc.relation.ispartof | Annals of Pure and Applied Logic, 2023, vol. 174, num.1 | - |
dc.relation.uri | https://doi.org/10.1016/j.apal.2022.103171 | - |
dc.rights | cc by (c) Joan Bagaria et al., 2023 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
dc.subject.classification | Nombres cardinals | - |
dc.subject.classification | Teoria de conjunts | - |
dc.subject.classification | Categories (Matemàtica) | - |
dc.subject.other | Cardinal numbers | - |
dc.subject.other | Set theory | - |
dc.subject.other | Categories (Mathematics) | - |
dc.title | Huge Reflection | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 744330 | - |
dc.date.updated | 2025-01-13T08:29:51Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
847280.pdf | 700.92 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License