Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217380
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLücke, Philipp-
dc.contributor.authorBagaria, Joan-
dc.date.accessioned2025-01-13T08:29:51Z-
dc.date.available2025-01-13T08:29:51Z-
dc.date.issued2023-01-
dc.identifier.issn0168-0072-
dc.identifier.urihttps://hdl.handle.net/2445/217380-
dc.description.abstractWe study Structural Reflection beyond Vopěnka's Principle, at the level of almosthuge cardinals and higher, up to rank-into-rank embeddings. We identify and classify new large cardinal notions in that region that correspond to some form of what we call Exact Structural Reflection (ESR). Namely, given cardinals $\kappa<\lambda$ and a class $\mathcal{C}$ of structures of the same type, the corresponding instance of ESR asserts that for every structure $A$ in $\mathcal{C}$ of rank $\lambda$, there is a structure $B$ in $\mathcal{C}$ of rank $\kappa$ and an elementary embedding of $B$ into $A$. Inspired by the statement of Chang's Conjecture, we also introduce and study sequential forms of ESR, which, in the case of sequences of length $\omega$, turn out to be very strong. Indeed, when restricted to $\Pi_1$-definable classes of structures they follow from the existence of $I 1$-embeddings, while for more complicated classes of structures, e.g., $\Sigma_2$, they are not known to be consistent. Thus, these principles unveil a new class of large cardinals that go beyond I1-embeddings, yet they may not fall into Kunen's Inconsistency.-
dc.format.extent32 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.apal.2022.103171-
dc.relation.ispartofAnnals of Pure and Applied Logic, 2023, vol. 174, num.1-
dc.relation.urihttps://doi.org/10.1016/j.apal.2022.103171-
dc.rightscc by (c) Joan Bagaria et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationNombres cardinals-
dc.subject.classificationTeoria de conjunts-
dc.subject.classificationCategories (Matemàtica)-
dc.subject.otherCardinal numbers-
dc.subject.otherSet theory-
dc.subject.otherCategories (Mathematics)-
dc.titleHuge Reflection-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec744330-
dc.date.updated2025-01-13T08:29:51Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
847280.pdf700.92 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons