Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217385
Title: | The Weak Vopênka Principle for definable classes of structures |
Author: | Bagaria, Joan Wilson, Trevor M. |
Keywords: | Nombres cardinals Categories (Matemàtica) Teoria de conjunts Cardinal numbers Categories (Mathematics) Set theory |
Issue Date: | Mar-2023 |
Publisher: | Association for Symbolic Logic. |
Abstract: | We give a level-by-level analysis of the Weak Vopěnka Principle for definable classes of relational structures ( WVP ), in accordance with the complexity of their definition, and we determine the large-cardinal strength of each level. Thus, in particular, we show that WVP for $\Sigma_2$-definable classes is equivalent to the existence of a strong cardinal. The main theorem (Theorem 5.11) shows, more generally, that WVP for $\Sigma_n$-definable classes is equivalent to the existence of a $\Sigma_n$-strong cardinal (Definition 5.1). Hence, WVP is equivalent to the existence of a $\Sigma_n$-strong cardinal for all $n<\omega$. |
Note: | Reproducció del document publicat a: https://doi.org/10.1017/jsl.2022.42 |
It is part of: | Journal of Symbolic Logic, 2023, vol. 88, num.1 |
URI: | https://hdl.handle.net/2445/217385 |
Related resource: | https://doi.org/10.1017/jsl.2022.42 |
ISSN: | 0022-4812 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
847284.pdf | 411.33 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.