Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217385
Title: The Weak Vopênka Principle for definable classes of structures
Author: Bagaria, Joan
Wilson, Trevor M.
Keywords: Nombres cardinals
Categories (Matemàtica)
Teoria de conjunts
Cardinal numbers
Categories (Mathematics)
Set theory
Issue Date: Mar-2023
Publisher: Association for Symbolic Logic.
Abstract: We give a level-by-level analysis of the Weak Vopěnka Principle for definable classes of relational structures ( WVP ), in accordance with the complexity of their definition, and we determine the large-cardinal strength of each level. Thus, in particular, we show that WVP for $\Sigma_2$-definable classes is equivalent to the existence of a strong cardinal. The main theorem (Theorem 5.11) shows, more generally, that WVP for $\Sigma_n$-definable classes is equivalent to the existence of a $\Sigma_n$-strong cardinal (Definition 5.1). Hence, WVP is equivalent to the existence of a $\Sigma_n$-strong cardinal for all $n<\omega$.
Note: Reproducció del document publicat a: https://doi.org/10.1017/jsl.2022.42
It is part of: Journal of Symbolic Logic, 2023, vol. 88, num.1
URI: https://hdl.handle.net/2445/217385
Related resource: https://doi.org/10.1017/jsl.2022.42
ISSN: 0022-4812
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
847284.pdf411.33 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.