Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217429
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Borges, Ana de Almeida Gabriel Vieira | - |
dc.contributor.author | Joosten, Joost J. | - |
dc.date.accessioned | 2025-01-13T18:57:41Z | - |
dc.date.available | 2025-01-13T18:57:41Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 0022-4812 | - |
dc.identifier.uri | https://hdl.handle.net/2445/217429 | - |
dc.description.abstract | Vardanyan’s Theorems [36, 37] state that QPL(PA)—the quantified provability logic of Peano Arithmetic—isΠ02 complete, and in particular that this already holds when the language is restricted to a single unary predicate. Moreover, Visser and de Jonge [38] generalized this result to conclude that it is impossible to computably axiomatize the quantified provability logic of a wide class of theories. However, the proof of this fact cannot be performed in a strictly positive signature. The system QRC1 was previously introduced by the authors [1] as a candidate first-order provability logic. Here we generalize the previously available Kripke soundness and completeness proofs, obtaining constant domain completeness. Then we show that QRC1 is indeed complete with respect to arithmetical semantics. This is achieved via a Solovaytype construction applied to constant domain Kripke models. As corollaries, we see that QRC1 is the strictly positive fragment of QGL and a fragment of QPL(PA). | - |
dc.format.extent | 26 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Association for Symbolic Logic. | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1017/jsl.2022.38 | - |
dc.relation.ispartof | Journal of Symbolic Logic, 2023, vol. 88, num.4, p. 1613-1638 | - |
dc.relation.uri | https://doi.org/10.1017/jsl.2022.38 | - |
dc.rights | cc-by (c) Borges, Ana de Almeida Gabriel Vieira et al, 2023 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.source | Articles publicats en revistes (Filosofia) | - |
dc.subject.classification | Modalitat (Lògica) | - |
dc.subject.classification | Aritmètica | - |
dc.subject.classification | Lògica matemàtica | - |
dc.subject.other | Modality (Logic) | - |
dc.subject.other | Arithmetic | - |
dc.subject.other | Mathematical logic | - |
dc.title | An Escape from Vardanyan's Theorem | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 723356 | - |
dc.date.updated | 2025-01-13T18:57:41Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Filosofia) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
250435.pdf | 303.51 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License