Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217441
Title: Interpolation and duality in spaces of pseudocontinuable functions
Author: Dyakonov, Konstantin M.
Keywords: Espais de Hardy
Funcions de variables complexes
Àlgebres de Banach
Hardy spaces
Functions of complex variables
Banach algebras
Issue Date: 1-Nov-2022
Publisher: Springer Verlag
Abstract: Given an inner function $\theta$ on the unit disk, let $K_\theta^p:=H^p \cap \theta \bar{z} \overline{H^p}$ be the associated starinvariant subspace of the Hardy space $H^p$. Also, we put $K_{* \theta}:=K_\theta^2 \cap \mathrm{BMO}$. Assuming that $B=B_{\mathcal{Z}}$ is an interpolating Blaschke product with zeros $\mathcal{Z}=\left\{z_j\right\}$, we characterize, for a number of smoothness classes $X$, the sequences of values $\mathcal{W}=\left\{w_j\right\}$ such that the interpolation problem $\left.f\right|_{\mathcal{Z}}=\mathcal{W}$ has a solution $f$ in $K_B^2 \cap X$. Turning to the case of a general inner function $\theta$, we further establish a non-duality relation between $K_\theta^1$ and $K_{* \theta}$. Namely, we prove that the latter space is properly contained in the dual of the former, unless $\theta$ is a finite Blaschke product. From this we derive an amusing non-interpolation result for functions in $K_{* B}$, with $B=B_{\mathcal{Z}}$ as above.
Note: Reproducció del document publicat a: https://doi.org/10.1007/s00209-022-03109-1
It is part of: Mathematische Zeitschrift, 2022, vol. 302, num.3, p. 1477-1488
URI: https://hdl.handle.net/2445/217441
Related resource: https://doi.org/10.1007/s00209-022-03109-1
ISSN: 0025-5874
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870019.pdf263.78 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons