Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217441
Title: | Interpolation and duality in spaces of pseudocontinuable functions |
Author: | Dyakonov, Konstantin M. |
Keywords: | Espais de Hardy Funcions de variables complexes Àlgebres de Banach Hardy spaces Functions of complex variables Banach algebras |
Issue Date: | 1-Nov-2022 |
Publisher: | Springer Verlag |
Abstract: | Given an inner function $\theta$ on the unit disk, let $K_\theta^p:=H^p \cap \theta \bar{z} \overline{H^p}$ be the associated starinvariant subspace of the Hardy space $H^p$. Also, we put $K_{* \theta}:=K_\theta^2 \cap \mathrm{BMO}$. Assuming that $B=B_{\mathcal{Z}}$ is an interpolating Blaschke product with zeros $\mathcal{Z}=\left\{z_j\right\}$, we characterize, for a number of smoothness classes $X$, the sequences of values $\mathcal{W}=\left\{w_j\right\}$ such that the interpolation problem $\left.f\right|_{\mathcal{Z}}=\mathcal{W}$ has a solution $f$ in $K_B^2 \cap X$. Turning to the case of a general inner function $\theta$, we further establish a non-duality relation between $K_\theta^1$ and $K_{* \theta}$. Namely, we prove that the latter space is properly contained in the dual of the former, unless $\theta$ is a finite Blaschke product. From this we derive an amusing non-interpolation result for functions in $K_{* B}$, with $B=B_{\mathcal{Z}}$ as above. |
Note: | Reproducció del document publicat a: https://doi.org/10.1007/s00209-022-03109-1 |
It is part of: | Mathematische Zeitschrift, 2022, vol. 302, num.3, p. 1477-1488 |
URI: | https://hdl.handle.net/2445/217441 |
Related resource: | https://doi.org/10.1007/s00209-022-03109-1 |
ISSN: | 0025-5874 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
870019.pdf | 263.78 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License