Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217445
Title: | Forcing axioms and the complexity of non-stationary ideals |
Author: | Cox, Sean Lücke, Philipp |
Keywords: | Teoria de conjunts Lògica matemàtica Set theory Mathematical logic |
Issue Date: | 1-Sep-2022 |
Publisher: | Springer Verlag |
Abstract: | We study the influence of strong forcing axioms on the complexity of the non-stationary ideal on $\omega_2$ and its restrictions to certain cofinalities. Our main result shows that the strengthening $\mathrm{MM}^{++}$of Martin's Maximum does not decide whether the restriction of the non-stationary ideal on $\omega_2$ to sets of ordinals of countable cofinality is $\Delta_1$-definable by formulas with parameters in $\mathrm{H}\left(\omega_3\right)$. The techniques developed in the proof of this result also allow us to prove analogous results for the full non-stationary ideal on $\omega_2$ and strong forcing axioms that are compatible with CH. Finally, we answer a question of S . Friedman, Wu and Zdomskyy by showing that the $\Delta_1$-definability of the non-stationary ideal on $\omega_2$ is compatible with arbitrary large values of the continuum function at $\omega_2$. |
Note: | Reproducció del document publicat a: https://doi.org/10.1007/s00605-022-01734-w |
It is part of: | Monatshefte für Mathematik, 2022, vol. 199, num.1, p. 45-84 |
URI: | https://hdl.handle.net/2445/217445 |
Related resource: | https://doi.org/10.1007/s00605-022-01734-w |
ISSN: | 0026-9255 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
870087.pdf | 608.04 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License