Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217445
Title: Forcing axioms and the complexity of non-stationary ideals
Author: Cox, Sean
Lücke, Philipp
Keywords: Teoria de conjunts
Lògica matemàtica
Set theory
Mathematical logic
Issue Date: 1-Sep-2022
Publisher: Springer Verlag
Abstract: We study the influence of strong forcing axioms on the complexity of the non-stationary ideal on $\omega_2$ and its restrictions to certain cofinalities. Our main result shows that the strengthening $\mathrm{MM}^{++}$of Martin's Maximum does not decide whether the restriction of the non-stationary ideal on $\omega_2$ to sets of ordinals of countable cofinality is $\Delta_1$-definable by formulas with parameters in $\mathrm{H}\left(\omega_3\right)$. The techniques developed in the proof of this result also allow us to prove analogous results for the full non-stationary ideal on $\omega_2$ and strong forcing axioms that are compatible with CH. Finally, we answer a question of S . Friedman, Wu and Zdomskyy by showing that the $\Delta_1$-definability of the non-stationary ideal on $\omega_2$ is compatible with arbitrary large values of the continuum function at $\omega_2$.
Note: Reproducció del document publicat a: https://doi.org/10.1007/s00605-022-01734-w
It is part of: Monatshefte für Mathematik, 2022, vol. 199, num.1, p. 45-84
URI: https://hdl.handle.net/2445/217445
Related resource: https://doi.org/10.1007/s00605-022-01734-w
ISSN: 0026-9255
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870087.pdf608.04 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons