Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217513
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPérez Moreno, Carlos-
dc.contributor.authorRoure Perdices, Eduard-
dc.date.accessioned2025-01-15T10:15:58Z-
dc.date.available2025-01-15T10:15:58Z-
dc.date.issued2021-07-21-
dc.identifier.issn0025-5831-
dc.identifier.urihttps://hdl.handle.net/2445/217513-
dc.description.abstractThe Hardy-Littlewood maximal operator $M$ satisfies the classical Sawyer-type estimate $$ \left\|\frac{M f}{v}\right\|_{L^{1, \infty}(u v)} \leq C_{u, v}\|f\|_{L^1(u)} $$ where $u \in A_1$ and $u v \in A_{\infty}$. We prove a novel extension of this result to the general restricted weak type case. That is, for $p>1, u \in A_p^{\mathcal{R}}$, and $u v^p \in A_{\infty}$, $$ \left\|\frac{M f}{v}\right\|_{L^{p, \infty}\left(u v^p\right)} \leq C_{u, v}\|f\|_{L^{p, 1}(u)} $$ From these estimates, we deduce new weighted restricted weak type bounds and Sawyertype inequalities for the $m$-fold product of Hardy-Littlewood maximal operators. We also present an innovative technique that allows us to transfer such estimates to a large class of multi-variable operators, including m-linear Calderón-Zygmund operators, avoiding the $A_{\infty}$ extrapolation theorem and producing many estimates that have not appeared in the literature before. In particular, we obtain a new characterization of $A_p^{\mathcal{R}}$. Furthermore, we introduce the class of weights that characterizes the restricted weak type bounds for the multi(sub)linear maximal operator $\mathcal{M}$, denoted by $A_{\mathbf{P}}^{\mathcal{R}}$, establish analogous bounds for sparse operators and $m$-linear Calderón-Zygmund operators, and study the corresponding multi-variable Sawyer-type inequalities for such operators and weights. Our results combine mixed restricted weak type norm inequalities, $A_p^{\mathcal{R}}$ and $A_{\mathbf{P}}^{\mathcal{R}}$ weights, and Lorentz spaces.-
dc.format.extent36 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Verlag-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00208-021-02240-4-
dc.relation.ispartofMathematische Annalen, 2021, vol. 383, num.1-2, p. 493-528-
dc.relation.urihttps://doi.org/10.1007/s00208-021-02240-4-
dc.rightscc by (c) Carlos Pérez Moreno et al., 2021-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationEspais de Lorentz-
dc.subject.classificationAnàlisi harmònica-
dc.subject.otherLorentz spaces-
dc.subject.otherHarmonic analysis-
dc.titleSawyer-type inequalities for Lorentz spaces-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec751580-
dc.date.updated2025-01-15T10:15:58Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870091.pdf531.64 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons