Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217559
Full metadata record
DC FieldValueLanguage
dc.contributor.authorClop, Albert-
dc.contributor.authorSengupta, Banhirup-
dc.date.accessioned2025-01-16T11:27:30Z-
dc.date.available2025-01-16T11:27:30Z-
dc.date.issued2022-08-15-
dc.identifier.issn0022-247X-
dc.identifier.urihttps://hdl.handle.net/2445/217559-
dc.description.abstractAmong those nearly incompressible vector fields $\mathbf{v}: \mathbb{R}^n \rightarrow \mathbb{R}^n$ with $|x| \log |x|$ growth at infinity, we give a pointwise characterization of the ones for which curl $\mathbf{v}=D \mathbf{v}-D^t \mathbf{v}$ belongs to $L^{\infty}$. When $n=2$ we can go further and describe, still in pointwise terms, the vector fields $\mathbf{v}: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ for which $|\operatorname{div} \mathbf{v}|+|\operatorname{curl} \mathbf{v}| \in L^{\infty}$.-
dc.format.extent32 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.jmaa.2022.126170-
dc.relation.ispartofJournal of Mathematical Analysis and Applications, 2022, vol. 512, num.2-
dc.relation.urihttps://doi.org/10.1016/j.jmaa.2022.126170-
dc.rightscc by (c) Albert Clop et al., 2022-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationEquacions diferencials-
dc.subject.classificationTeoria geomètrica de funcions-
dc.subject.otherDifferential equations-
dc.subject.otherGeometric function theory-
dc.titlePointwise descriptions of nearly incompressible vector fields with bounded curl-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec751639-
dc.date.updated2025-01-16T11:27:31Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870213.pdf559.66 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons