Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217650
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fontich, Ernest, 1955- | - |
dc.contributor.author | Garijo Real, Antonio | - |
dc.contributor.author | Jarque i Ribera, Xavier | - |
dc.date.accessioned | 2025-01-20T07:37:32Z | - |
dc.date.issued | 2024-09-24 | - |
dc.identifier.issn | 1078-0947 | - |
dc.identifier.uri | https://hdl.handle.net/2445/217650 | - |
dc.description.abstract | We consider the secant method $S_p$ applied to a real polynomial $p$ of degree $d+1$ as a discrete dynamical system on $\mathbb R^2$. If the polynomial $p$ has a local extremum at a point $\alpha$ then the discrete dynamical system generated by the iterates of the secant map exhibits a critical periodic orbit of period 3 or three-cycle at the point $(\alpha,\alpha)$. We propose a simple model map $T_{a,d}$ having a unique fixed point at the origin which encodes the dynamical behaviour of $S_p^3$ at the critical three-cycle. The main goal of the paper is to describe the geometry and topology of the basin of attraction of the origin of $T_{a,d}$ as well as its boundary. Our results concern global, rather than local, dynamical behaviour. They include that the boundary of the basin of attraction is the stable manifold of a fixed point or contains the stable manifold of a two-cycle, depending on the values of the parameters of $d$ (even or odd) and $a\in \mathbb R$ (positive or negative). | - |
dc.format.extent | 34 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | American Institute of Mathematical Sciences (AIMS) | - |
dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.3934/dcds.2024122 | - |
dc.relation.ispartof | Discrete and Continuous Dynamical Systems-Series A, 2024, vol. 45, num.4, p. 1045-1078 | - |
dc.relation.uri | https://doi.org/10.3934/dcds.2024122 | - |
dc.rights | (c) American Institute of Mathematical Sciences (AIMS), 2024 | - |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
dc.subject.classification | Sistemes dinàmics diferenciables | - |
dc.subject.classification | Varietats (Matemàtica) | - |
dc.subject.other | Differentiable dynamical systems | - |
dc.subject.other | Manifolds (Mathematics) | - |
dc.title | On the basin of attraction of a critical three-cycle of a model for the secant map | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.idgrec | 752306 | - |
dc.date.updated | 2025-01-20T07:37:33Z | - |
dc.rights.accessRights | info:eu-repo/semantics/embargoedAccess | - |
dc.embargo.lift | 2025-09-23 | - |
dc.date.embargoEndDate | info:eu-repo/date/embargoEnd/2025-09-23 | - |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
872356.pdf | 651.12 kB | Adobe PDF | View/Open Request a copy |
Document embargat fins el
23-9-2025
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.