Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217650
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFontich, Ernest, 1955--
dc.contributor.authorGarijo Real, Antonio-
dc.contributor.authorJarque i Ribera, Xavier-
dc.date.accessioned2025-01-20T07:37:32Z-
dc.date.issued2024-09-24-
dc.identifier.issn1078-0947-
dc.identifier.urihttps://hdl.handle.net/2445/217650-
dc.description.abstractWe consider the secant method $S_p$ applied to a  real polynomial $p$ of degree $d+1$ as a discrete dynamical system on $\mathbb R^2$. If the polynomial $p$ has a local extremum at a point $\alpha$ then the discrete dynamical system generated by the iterates of the secant map exhibits a critical periodic orbit of period 3 or three-cycle at the point $(\alpha,\alpha)$. We propose a simple model map $T_{a,d}$ having a unique fixed point at the origin which encodes the dynamical behaviour of $S_p^3$ at the critical three-cycle. The main goal of the paper is to describe the geometry and topology of the basin of attraction of the origin of $T_{a,d}$ as well as its boundary. Our results concern global, rather than local, dynamical behaviour. They include that the boundary of the basin of attraction is the stable manifold of a fixed point or contains the stable manifold of a two-cycle, depending on the values of the parameters of $d$ (even or odd) and $a\in \mathbb R$ (positive or negative).-
dc.format.extent34 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.3934/dcds.2024122-
dc.relation.ispartofDiscrete and Continuous Dynamical Systems-Series A, 2024, vol. 45, num.4, p. 1045-1078-
dc.relation.urihttps://doi.org/10.3934/dcds.2024122-
dc.rights(c) American Institute of Mathematical Sciences (AIMS), 2024-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationSistemes dinàmics diferenciables-
dc.subject.classificationVarietats (Matemàtica)-
dc.subject.otherDifferentiable dynamical systems-
dc.subject.otherManifolds (Mathematics)-
dc.titleOn the basin of attraction of a critical three-cycle of a model for the secant map-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec752306-
dc.date.updated2025-01-20T07:37:33Z-
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess-
dc.embargo.lift2025-09-23-
dc.date.embargoEndDateinfo:eu-repo/date/embargoEnd/2025-09-23-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
872356.pdf651.12 kBAdobe PDFView/Open    Request a copy


Embargat   Document embargat fins el 23-9-2025


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.