Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217653
Title: Questions about extreme points
Author: Dyakonov, Konstantin M.
Keywords: Anàlisi harmònica
Funcions analítiques
Funcions de variables complexes
Espais de Hardy
Harmonic analysis
Analytic functions
Functions of complex variables
Hardy spaces
Issue Date: 2-May-2023
Publisher: Springer Verlag
Abstract: We discuss the geometry of the unit ball —specifically, the structure of its extreme points (if any)— in subspaces of $L^{1}$ and $L^{\infty}$ on the circle that are formed by functions with prescribed spectral gaps. A similar issue is considered for kernels of Toeplitz operators in $H^{\infty}$.
Note: Reproducció del document publicat a: https://doi.org/10.1007/s00020-023-02733-8
It is part of: Integral Equations and Operator Theory, 2023, vol. 95, num.2
URI: https://hdl.handle.net/2445/217653
Related resource: https://doi.org/10.1007/s00020-023-02733-8
ISSN: 0378-620X
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870459.pdf323.89 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons