Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/217659
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Crespo Vicente, Teresa | - |
dc.contributor.author | Gil Muñoz, Daniel | - |
dc.contributor.author | Rio, Anna | - |
dc.contributor.author | Vela del Olmo, Ma. Montserrat (Maria Montserrat) | - |
dc.date.accessioned | 2025-01-20T09:39:32Z | - |
dc.date.available | 2025-01-20T09:39:32Z | - |
dc.date.issued | 2023-09-01 | - |
dc.identifier.issn | 0022-4049 | - |
dc.identifier.uri | https://hdl.handle.net/2445/217659 | - |
dc.description.abstract | Let $p$ be a prime number and let $n$ be an integer not divisible by $p$ and such that every group of order $n p$ has a normal subgroup of order $p$. (This holds in particular for $p>n$.) Under these hypotheses, we obtain a one-to-one correspondence between the isomorphism classes of braces of size $n p$ and the set of pairs $\left(B_n,[\tau]\right)$, where $B_n$ runs over the isomorphism classes of braces of size $n$ and $[\tau]$ runs over the classes of group morphisms from the multiplicative group of $B_n$ to $\mathbf{Z}_p^*$ under a certain equivalence relation. This correspondence gives the classification of braces of size $n p$ from the one of braces of size $n$. From this result we derive a formula giving the number of Hopf Galois structures of abelian type $\mathbf{Z}_p \times E$ on a Galois extension of degree $n p$ in terms of the number of Hopf Galois structures of abelian type $E$ on a Galois extension of degree $n$. For a prime number $p \geq 7$, we apply the obtained results to describe all left braces of size $12 p$ and determine the number of Hopf Galois structures of abelian type on a Galois extension of degree $12 p$. | - |
dc.format.extent | 16 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1016/j.jpaa.2023.107371 | - |
dc.relation.ispartof | Journal of Pure and Applied Algebra, 2023, vol. 227, num.9 | - |
dc.relation.uri | https://doi.org/10.1016/j.jpaa.2023.107371 | - |
dc.rights | cc by-nc-nd (c) Teresa Crespo Vicente et al., 2023 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
dc.subject.classification | Àlgebres de Hopf | - |
dc.subject.classification | Grups de permutacions | - |
dc.subject.classification | Extensions de cossos (Matemàtica) | - |
dc.subject.other | Hopf algebras | - |
dc.subject.other | Permutation groups | - |
dc.subject.other | Field extensions (Mathematics) | - |
dc.title | Inducing braces and Hopf Galois structures | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 751671 | - |
dc.date.updated | 2025-01-20T09:39:32Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
870252.pdf | 393.94 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License