Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217659
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCrespo Vicente, Teresa-
dc.contributor.authorGil Muñoz, Daniel-
dc.contributor.authorRio, Anna-
dc.contributor.authorVela del Olmo, Ma. Montserrat (Maria Montserrat)-
dc.date.accessioned2025-01-20T09:39:32Z-
dc.date.available2025-01-20T09:39:32Z-
dc.date.issued2023-09-01-
dc.identifier.issn0022-4049-
dc.identifier.urihttps://hdl.handle.net/2445/217659-
dc.description.abstractLet $p$ be a prime number and let $n$ be an integer not divisible by $p$ and such that every group of order $n p$ has a normal subgroup of order $p$. (This holds in particular for $p>n$.) Under these hypotheses, we obtain a one-to-one correspondence between the isomorphism classes of braces of size $n p$ and the set of pairs $\left(B_n,[\tau]\right)$, where $B_n$ runs over the isomorphism classes of braces of size $n$ and $[\tau]$ runs over the classes of group morphisms from the multiplicative group of $B_n$ to $\mathbf{Z}_p^*$ under a certain equivalence relation. This correspondence gives the classification of braces of size $n p$ from the one of braces of size $n$. From this result we derive a formula giving the number of Hopf Galois structures of abelian type $\mathbf{Z}_p \times E$ on a Galois extension of degree $n p$ in terms of the number of Hopf Galois structures of abelian type $E$ on a Galois extension of degree $n$. For a prime number $p \geq 7$, we apply the obtained results to describe all left braces of size $12 p$ and determine the number of Hopf Galois structures of abelian type on a Galois extension of degree $12 p$.-
dc.format.extent16 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.jpaa.2023.107371-
dc.relation.ispartofJournal of Pure and Applied Algebra, 2023, vol. 227, num.9-
dc.relation.urihttps://doi.org/10.1016/j.jpaa.2023.107371-
dc.rightscc by-nc-nd (c) Teresa Crespo Vicente et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationÀlgebres de Hopf-
dc.subject.classificationGrups de permutacions-
dc.subject.classificationExtensions de cossos (Matemàtica)-
dc.subject.otherHopf algebras-
dc.subject.otherPermutation groups-
dc.subject.otherField extensions (Mathematics)-
dc.titleInducing braces and Hopf Galois structures-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec751671-
dc.date.updated2025-01-20T09:39:32Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
870252.pdf393.94 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons