Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/217911
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBueno del Pozo, Daniel-
dc.contributor.authorYedra, Lluis-
dc.contributor.authorKepaptsoglou, Demie-
dc.contributor.authorRamasse, Quentin-
dc.contributor.authorPeiró Martínez, Francisca-
dc.contributor.authorEstradé Albiol, Sònia-
dc.date.accessioned2025-01-23T17:35:41Z-
dc.date.available2025-01-23T17:35:41Z-
dc.date.issued2024-04-29-
dc.identifier.issn1431-9276-
dc.identifier.urihttps://hdl.handle.net/2445/217911-
dc.description.abstractRecent advances in machine learning (ML) have highlighted a novel challenge concerning the quality and quantity of data required to effectively train algorithms in supervised ML procedures. This article introduces a data augmentation (DA) strategy for electron energy loss spectroscopy (EELS) data, employing generative adversarial networks (GANs). We present an innovative approach, called the data augmentation generative adversarial network (DAG), which facilitates data generation from a very limited number of spectra, around 100. Throughout this study, we explore the optimal configuration for GANs to produce realistic spectra. Notably, our DAG generates realistic spectra, and the spectra produced by the generator are successfully used in real-world applications to train classifiers based on artificial neural networks (ANNs) and support vector machines (SVMs) that have been successful in classifying experimental EEL spectra.-
dc.format.extent16 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherCambridge University Press (CUP)-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1093/mam/ozae014-
dc.relation.ispartofMicroscopy and Microanalysis, 2024, vol. 30, p. 278-293-
dc.relation.urihttps://doi.org/10.1093/mam/ozae014-
dc.rightscc-by (c) Bueno del Pozo, Daniel, et al., 2024-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationEspectroscòpia de pèrdua d'energia d'electrons-
dc.subject.otherMachine learning-
dc.subject.otherElectron energy loss spectroscopy-
dc.titleMachine learning data augmentation strategy for electron energy loss spectroscopy: generative adversarial networks-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec753355-
dc.date.updated2025-01-23T17:35:41Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
875500.pdf5.28 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons